Patents by Inventor Alfonso L. Baldi

Alfonso L. Baldi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100080755
    Abstract: The present invention relates to the production of hydrogen gas. More particularly, the present invention relates to: (1) a composition and process for the displacement of hydrogen from water under standard temperature and pressure conditions; (2) a hydrogen fuel system; (3) a method for using the hydrogen fuel system in conjunction with a feedstock composition to produce hydrogen gas (e.g., onboard a vehicle); and (4) a method of using the hydrogen fuel system at a reduced cost (e.g., by providing a consumer rebate in exchange for the return of byproduct(s) collected after using the hydrogen fuel system). The composition (e.g., a feedstock composition) comprises finely divided metal powders (e.g., magnesium, or magnesium and aluminum) and can also contain a chloride salt (e.g., sodium chloride or potassium chloride).
    Type: Application
    Filed: September 30, 2009
    Publication date: April 1, 2010
    Applicant: ALLOY SURFACES COMPANY, INC.
    Inventors: John J. Parker, Alfonso L. Baldi
  • Publication number: 20090280054
    Abstract: The present invention relates to the production of hydrogen. More particularly, the present invention relates to a composition and process for the displacement of hydrogen from water under standard temperature and pressure conditions. The composition comprises finely divided metal powders (e.g., magnesium, or magnesium and aluminum) and can also contain a chloride salt (e.g., sodium chloride or potassium chloride). The process of the present invention comprises adding a composition of the present invention to water (either water that already contains chloride ions—such as seawater—or, alternatively, with compositions that contain a chloride salt, either fresh water or seawater), at standard temperature and pressure conditions, in order to create hydrogen gas from the displacement of hydrogen from the water.
    Type: Application
    Filed: March 4, 2009
    Publication date: November 12, 2009
    Inventors: John J. Parker, Alfonso L. Baldi
  • Patent number: 6491766
    Abstract: A coating composition and process have been developed to provide an activated coating on nickel screen for use as cathodes in electrolytic cells for the generation of hydrogen and oxygen. Compared to the earlier Classical Pack Cementation process, the disclosed process is less expensive, reduces processing time from 20 hours to a few minutes, eliminates dusts and toxic gases, and provides improved performance in cells for hydrogen and oxygen generation. The coating is characterized by the presence of two activated layers with a high surface area, a multitude of fissures and a nickel to aluminum weight ratio greater than 20/1 in the top layer and greater than 4/1 in the bottom layer adjacent to the nickel substrate.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: December 10, 2002
    Assignee: Alloy Surfaces Co., Inc.
    Inventors: Alfonso L. Baldi, Frank J. Clark
  • Patent number: 6258461
    Abstract: A coating composition and process have been developed to provide an activated coating on nickel screen for use as cathodes in electrolytic cells for the generation of hydrogen and oxygen. Compared to the earlier Classical Pack Cementation process, the disclosed process is less expensive, reduces processing time from 20 hours to a few minutes, eliminates dusts and toxic gases, and provides improved performance in cells for hydrogen and oxygen generation. The coating is characterized by the presence of two activated layers with a high surface area, a multitude of fissures and a nickel to aluminum weight ratio greater than 20/1 in the top layer and greater than 4/1 in the bottom layer adjacent to the nickel substrate.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: July 10, 2001
    Assignee: Alloy Surfaces Co., Inc.
    Inventors: Alfonso L. Baldi, Frank J. Clark
  • Patent number: 6193814
    Abstract: The present invention relates to the preparation of activated metal, particularly activated tinplate, and the activated metal itself. The activated metal is highly reactive with oxygen and can be used as a pyrophoric decoy material or as a catalyst.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: February 27, 2001
    Assignee: Alloy Surfaces Company
    Inventor: Alfonso L. Baldi
  • Patent number: 6093498
    Abstract: The present invention relates to the preparation of activated metal, particularly activated tinplate, and the activated metal itself. The activated metal is highly reactive with oxygen and can be used as a pyrophoric decoy material or as a catalyst.
    Type: Grant
    Filed: May 22, 1997
    Date of Patent: July 25, 2000
    Assignee: Alloy Surfaces Co., Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5501751
    Abstract: The present invention is directed to the encapsulation of pyrophoric materials in a high temperature resistant membrane having at least one perforation which allows air to contact the pyrophoric material. By controlling the accessibility of the pyrophoric material to the surrounding air, it is possible to reduce the kinetics of the oxidation reaction without affecting the thermodynamics of the reaction. This results in a product that demonstrates a lower peak temperature, longer dwell time at the lower temperature and, in most cases, an increase in the total heat energy output in comparison to an identical pyrophoric material that is not so encapsulated.
    Type: Grant
    Filed: December 8, 1994
    Date of Patent: March 26, 1996
    Assignee: Alloy Surfaces Co. Inc.
    Inventors: Alfonso L. Baldi, Frank J. Clark
  • Patent number: 5464699
    Abstract: A pyrophoric coating formed by leaching aluminum from an aluminide coated web in which the aluminide coating was formed on or into the web by an exothermic and diffusion reaction of a powder containing aluminum and chromium with or without a transition metal selected from the group consisting of iron, nickel or cobalt and in which the weight ratio of chromium to aluminum is at least 1:50 but no more than about 1:4.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: November 7, 1995
    Assignee: Alloy Surfaces Co. Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5262466
    Abstract: A masking composition, which serves to prevent diffusion of one metal into selected areas of a substrate of another metal when said composition is applied to said selected areas, comprises a suspension of a masking powder in an aqueous solution comprising water and water soluble alcohol in which is dissolved polyvinyl alcohol.
    Type: Grant
    Filed: November 1, 1991
    Date of Patent: November 16, 1993
    Assignee: Alloy Surfaces Co. Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5194219
    Abstract: Very good masking of pack diffusion aluminizing or chromizing on any metal to keep portions from being diffusion coated, is effected by localized coating the lowest layer of which is depletion-reducing masking powder the metal portion of which can have same composition as substrates, mixed with inert refractory diluent and non-contaminating film-former such as acrylic resin. The upper coating layer can be of non-contaminating particles like nickel or Cr.sub.2 O.sub.3 that upon aluminizing or chromizing become coherently held together to form a secure sheath. Such sheath can also be used for holding localized diffusion-coating layer in place. Film-former can be dissolved in volatile solvent, preferably methyl chloroform, in which masking powder or sheath-forming powder is suspended. Chromizing can be performed before aluminizing for greater effects. Aluminizing of metals like iron and nickel followed by leaching out much of the diffused-in aluminum, gives these substrates a pyrophoric and catalytic surface.
    Type: Grant
    Filed: July 7, 1992
    Date of Patent: March 16, 1993
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5182078
    Abstract: Diffusion coating can be speeded by high heat input. Diffusion coating packs can be made with chemically reduced metal content of sludges. Diffusion aluminizing followed by caustic leaching to remove much of the diffused-in aluminum, yields catalytically and pyrophorically active porous surface that also accepts top coatings. Mixtures of aluminum powder with nickel and/or iron powders react when heated to form Raney-like product that can be leached to become pyrophoric, and when held on a metal foil or gauze web will adhere to the web so that leached product can be used as pyrophoric foil for decoying heat-seeking missiles. Such adhesion is improved by addition of small amount of copper.
    Type: Grant
    Filed: June 6, 1990
    Date of Patent: January 26, 1993
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5128179
    Abstract: A nickel-base superalloy is subjected to a diffusion chromizing that supplies a chromized diffusion case, the outer surface of which contains excess alphachrome phase, and then contacting the diffusion case with an aqueous solution of alkali metal permanganate and alkali metal hydroxide until the desired amount of alphachrome phase is eliminated.
    Type: Grant
    Filed: September 8, 1986
    Date of Patent: July 7, 1992
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5102700
    Abstract: Pyrophorically activated aluminides of iron, nickel and cobalt, or mixtures thereof, are formed as discs or as coatings on substrates such as thin foils. The aluminide can be formed in situ by reacting aluminum powder with the aluminide-forming metal. Mixtures of these reactants can be applied to a substrate as such or suspended in a liquid like water or volatilizable organic liquids. Water is preferably used with a little binder such as an alkali metal silicate. An inhibitor is used to keep the water from reacting with finely-divided aluminum, and those silicates also perform such function. The pyrophoric products can be discharged to decoy heat-seeking missiles, or they can have their pyrophoricity destroyed to make catalysts. Pyrophoric action can be heightened by additives such as boron, and by post treatment with mild acid.
    Type: Grant
    Filed: November 1, 1990
    Date of Patent: April 7, 1992
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5077257
    Abstract: Porous metal aluminide catalysts are formed by sintering together a mixture of aluminum powder with a powdered pyrophorically activatable metal in the proportion of about 11/2 to 3 atoms of aluminum for every atom of the activatable metal to cause the metal to interact and form a coherent mass, then leaching aluminum out of the mass to render it pyrophoric and then destroying that pyrophoricity.
    Type: Grant
    Filed: January 30, 1990
    Date of Patent: December 31, 1991
    Assignee: Alloy Surfaces Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 5028385
    Abstract: Coating with high-melting metals can be simplified by alloying high-melting metal with sufficient aluminum to make low-melting alloy that is applied, bonded in place, and then subjected to the leaching out of some or most of the aluminum. The resulting surface is porous and will receive and hold top coatings. Leached surface can be pyrophoric and top coating can be exothermically combustible. Pyrophoric powder can also be coated on boron or carbon fibers or sintered with combustible particles. Carbon can be kept from contaminating diffusion-treated workpieces, by conducting diffusion treatment in retorts containing little or no carbon. Porosity can be created by subjecting workpiece to diffusion conditions in contact with depleting material such as powdered nickel or high-nickel aluminides or cobalt or high-cobalt aluminides. Aluminum particles can be electrophoretically deposited on foil and then diffused in. Leaching aluminum out with caustic is improved when a little H.sub.2 O.sub.
    Type: Grant
    Filed: November 8, 1989
    Date of Patent: July 2, 1991
    Inventor: Alfonso L. Baldi
  • Patent number: 4977036
    Abstract: Workpieces are very rapidly diffusion coated by heating the packed workpieces at a rate that brings the workpieces to diffusion-coating temperature and then completing the diffusion coating, all in less than 50 minutes, then cooling. Workpiece can have top coating layer of aluminum flake covered by a layer of extremely fine alumina or silica in a magnesium chromate binder, to provide surface having roughness at least about 10 micro-inches smoother than before the top coating. Used aluminized jet engine hot section members can be reconditioned by a fluoridizing treatment that deoxidizes and also removes residual aluminizing, so that the members can then be repaired if necessary and re-aluminized.
    Type: Grant
    Filed: November 21, 1989
    Date of Patent: December 11, 1990
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 4970114
    Abstract: Pyrophoric powder can be coated on boron or carbon fibers or sintered with combustible particles. Carbon can be kept from contaminating diffusion-treated workpieces, by conducting diffusion treatment in retorts containing little or no carbon. Porosity can be created by subjecting workpiece to diffusion conditions in contact with depleting material such as powdered nickel or high-nickel aluminides or cobalt or high-cobalt aluminides. Aluminum particles can be electrophoretically deposited on foil and then diffused in. Leaching aluminum out with caustic is improved when a little H.sub.2 O.sub.2 is present in the caustic. Subsequent treatment of the leached surface with weak acid further improves pyrophoricity, and folding of the pyrophoric member extends its pyrophorically-generated high temperature dwell. Resin foil containing pyrophoric particles makes effective decoy.
    Type: Grant
    Filed: April 18, 1988
    Date of Patent: November 13, 1990
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 4965095
    Abstract: Workpieces are very rapidly diffusion coated by heating the packed workpiece at a rate that brings the workpiece to diffusion-coating temperature and then completing the diffusion coating, all in less than 50 minutes, then cooling. Workpiece can have top coating layer of aluminum flake covered by a layer of extremely fine alumina or silica in a magnesium chromate binder, to provide surface having roughness at least about 10 micro-inches smoother than before the top coating. Used aluminized jet engine hot section members can be reconditioned by a fluoridizing treatment that deoxidizes and also removes residual aluminizing, so that the members can then be repaired if necessary and re-aluminized.
    Type: Grant
    Filed: December 22, 1988
    Date of Patent: October 23, 1990
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 4957421
    Abstract: Titanium and titanium alloy surfaces can be diffusion coated, and portions of the surface protected against such coating by localized powdered masking layer of about 43% titanium, aluminum in an amount equal to the aluminum content of the surface masked, as well as other metals in an amount about one-fifth of their content in the surface masked. Diffusion coating can be speeded by high heat input. Diffusion coating packs can be made with chemically reduced metal content of sludges. Diffusion aliminizing followed by caustic leaching to remove much of the diffused-in aluminum, yields catalytically and pyrophorically active porous surface that also accepts top coatings. Mixtures of aluminum powder with nickel and/or iron powders react when heated to form Raney-like product that can be leached to become pyrophoric, and when held on a metal foil or gauze web will adhere to the web so that leached product can be used as pyrophoric foil for decoying heat-seeking missiles.
    Type: Grant
    Filed: April 10, 1989
    Date of Patent: September 18, 1990
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi
  • Patent number: 4927798
    Abstract: Iron and nickel are activated by diffusing aluminum into their surface at low temperature, and then leaching out some of that aluminum with caustic. So activated they are extremely pyrophoric and have their pyrophoric action improved by short dip in acid solution having pH about 2 to about 4. Foils of such metals so treated can be folded to further increase pyrophoric action.
    Type: Grant
    Filed: March 23, 1987
    Date of Patent: May 22, 1990
    Assignee: Alloy Surfaces Company, Inc.
    Inventor: Alfonso L. Baldi