Patents by Inventor Alfred BISMUTO

Alfred BISMUTO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200244045
    Abstract: A laser chip including a plurality of stripes is disclosed, where a laser stripe can be grown with an initial optical gain profile, and its optical gain profile can be shifted by using an intermixing process. In this manner, multiple laser stripes can be formed on the same laser chip from the same epitaxial wafer, where at least one laser stripe can have an optical gain profile shifted relative to another laser stripe. For example, each laser stripe can have a shifted optical gain profile relative to its neighboring laser stripe, thereby each laser stripe can emit light with a different range of wavelengths. The laser chip can emit light across a wide range of wavelengths. Examples of the disclosure further includes different regions of a given laser stripe having different intermixing amounts.
    Type: Application
    Filed: September 25, 2018
    Publication date: July 30, 2020
    Inventors: Alfred Bismuto, Mark Alan Arbore, Ross M. Audet
  • Patent number: 10038307
    Abstract: For epitaxial-side-down bonding of quantum cascade lasers (QCLs), it is important to optimize the heat transfer between the QCL chip and the heat sink to which the chip is mounted. This is achieved by using a heatsink with high thermal conductivity and by minimizing the thermal resistance between the laser active region and said heatsink. In the epi-down configuration concerned, the active region of the QCL is located only a few micrometers away from the heatsink, which is preferable from a thermal standpoint. However, this design is challenging to implement and often results in a low fabrication yield if no special precautions are taken. Since the active region is very close to the heatsink, solder material may ooze out on the sides of the chip during the bonding process and may short-circuits the device, rendering it unusable. To avoid this happening, the invention proposes to provide a trench all around the chip with the exception of the two waveguide facets, i.e. the ends of the active region.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 31, 2018
    Assignee: Alpes Lasers SA
    Inventors: Richard Maulini, Alfred Bismuto, Tobias Gresch, Antoine Müller
  • Publication number: 20170324220
    Abstract: For epitaxial-side-down bonding of quantum cascade lasers (QCLs), it is important to optimize the heat transfer between the QCL chip and the heat sink to which the chip is mounted. This is achieved by using a heatsink with high thermal conductivity and by minimizing the thermal resistance between the laser active region and said heatsink. In the epi-down configuration concerned, the active region of the QCL is located only a few micrometers away from the heatsink, which is preferable from a thermal standpoint. However, this design is challenging to implement and often results in a low fabrication yield if no special precautions are taken. Since the active region is very close to the heatsink, solder material may ooze out on the sides of the chip during the bonding process and may short-circuits the device, rendering it unusable. To avoid this happening, the invention proposes to provide a trench all around the chip with the exception of the two waveguide facets, i.e. the ends of the active region.
    Type: Application
    Filed: December 19, 2014
    Publication date: November 9, 2017
    Inventors: Richard MAULINI, Alfred BISMUTO, Tobias GRESCH, Antoine MÜLLER