Patents by Inventor Alfred E. Brown, JR.

Alfred E. Brown, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240052073
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec?1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec?1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 15, 2024
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, JR., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Patent number: 11866529
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec?1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec?1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, Jr., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Patent number: 11859024
    Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: January 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Alfred E. Brown, Jr., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
  • Publication number: 20230124846
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3. a ratio of HLMI/MI from 185 to 550. an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec-1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec-1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 20, 2023
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, JR., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Patent number: 11578156
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec?1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec?1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: February 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, Jr., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Publication number: 20220127395
    Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.
    Type: Application
    Filed: January 10, 2022
    Publication date: April 28, 2022
    Inventors: Jeremy M. Praetorius, Alfred E. Brown, Jr., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
  • Publication number: 20220119562
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec?1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec?1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Application
    Filed: October 20, 2020
    Publication date: April 21, 2022
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, JR., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Patent number: 11267919
    Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Alfred E. Brown, Jr., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
  • Publication number: 20210388130
    Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Jeremy M. Praetorius, Alfred E. Brown, JR., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
  • Patent number: 10065367
    Abstract: Disclosed embodiments include the formation of an article of manufacture by a process in which vibrations are generated in a bulk material disposed within a build chamber. The vibrations are focused within a section of the base material, and the focusing is controlled to cause the section of the base material to undergo a physical transformation to form at least a portion of the article of manufacture.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: September 4, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Alfred E. Brown, Jr.
  • Patent number: 10040239
    Abstract: Disclosed embodiments include the formation of a manufacturing part by a process in which three-dimensional patterns of excitation are produced in a bulk material, and the three-dimensional patterns intersect to cause interference. The interference is used to perform physical or chemical conversion of the bulk material into an article of manufacture having a geometry corresponding to a three-dimensional projection produced from the intersection of the three-dimensional patterns.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: August 7, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Alfred E. Brown, Jr.
  • Patent number: 9475898
    Abstract: Disclosed herein are ethylene-based polymers having a higher molecular weight component and a lower molecular weight component, and characterized by a density greater than 0.945 g/cm3, a melt index less than 1.5 g/10 min, and a ratio of high load melt index to melt index ranging from 40 to 175. These polymers have the processability of chromium-based resins, but with improved stiffness and stress crack resistance, and can be used in blow molding and other end-use applications.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: October 25, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Vivek Rohatgi, Jeffrey F. Greco, Yongwoo Inn, Qing Yang, Alfred E. Brown, Jr.
  • Publication number: 20160271870
    Abstract: Disclosed embodiments include the formation of an article of manufacture by a process in which vibrations are generated in a bulk material disposed within a build chamber. The vibrations are focused within a section of the base material, and the focusing is controlled to cause the section of the base material to undergo a physical transformation to form at least a portion of the article of manufacture.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 22, 2016
    Inventor: Alfred E. Brown, JR.
  • Publication number: 20160271875
    Abstract: Disclosed embodiments include the formation of a manufacturing part by a process in which three-dimensional patterns of excitation are produced in a bulk material, and the three-dimensional patterns intersect to cause interference. The interference is used to perform physical or chemical conversion of the bulk material into an article of manufacture having a geometry corresponding to a three-dimensional projection produced from the intersection of the three-dimensional patterns.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 22, 2016
    Inventor: Alfred E. Brown, JR.
  • Publication number: 20160053035
    Abstract: Disclosed herein are ethylene-based polymers having a higher molecular weight component and a lower molecular weight component, and characterized by a density greater than 0.945 g/cm3, a melt index less than 1.5 g/10 min, and a ratio of high load melt index to melt index ranging from 40 to 175. These polymers have the processability of chromium-based resins, but with improved stiffness and stress crack resistance, and can be used in blow molding and other end-use applications.
    Type: Application
    Filed: September 21, 2015
    Publication date: February 25, 2016
    Inventors: Vivek Rohatgi, Jeffrey F. Greco, Yongwoo Inn, Qing Yang, Alfred E. Brown, JR.
  • Patent number: 9169337
    Abstract: Disclosed herein are ethylene-based polymers having a higher molecular weight component and a lower molecular weight component, and characterized by a density greater than 0.945 g/cm3, a melt index less than 1.5 g/10 min, and a ratio of high load melt index to melt index ranging from 40 to 175. These polymers have the processability of chromium-based resins, but with improved stiffness and stress crack resistance, and can be used in blow molding and other end-use applications.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: October 27, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Vivek Rohatgi, Jeffrey F. Greco, Yongwoo Inn, Qing Yang, Alfred E. Brown, Jr.
  • Publication number: 20150259444
    Abstract: Disclosed herein are ethylene-based polymers having a higher molecular weight component and a lower molecular weight component, and characterized by a density greater than 0.945 g/cm3, a melt index less than 1.5 g/10 min, and a ratio of high load melt index to melt index ranging from 40 to 175. These polymers have the processability of chromium-based resins, but with improved stiffness and stress crack resistance, and can be used in blow molding and other end-use applications.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 17, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Vivek Rohatgi, Jeffrey F. Greco, Yongwoo Inn, Qing Yang, Alfred E. Brown, JR.