Patents by Inventor Alfred Grau Besoli

Alfred Grau Besoli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11469521
    Abstract: Provided is an apparatus including a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: October 11, 2022
    Assignee: SILICON VALLEY BANK
    Inventors: Seunghwan Yoon, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Publication number: 20220294522
    Abstract: An integrated repeater system that includes a repeater device having a first surface and a second surface that is opposite to the first surface. The repeater device further comprises phased array antenna receivers arranged on the first surface and receives a mmWave radio frequency signal from a base station, and one or more phased array antenna transmitters arranged on the second surface and transmits the received mmWave radio frequency signal through a glass structure to a user equipment. The integrated repeater system further comprises an impedance matching component between the second surface and the glass structure. Further, an impedance of the one or more phased array antenna transmitters is tuned in accordance with the glass structure based on the impedance matching component.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 15, 2022
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli
  • Publication number: 20220294124
    Abstract: An antenna device includes a first patch radiator and a second patch radiator arranged over the first patch radiator. The antenna device further includes a central ground pin connected substantially at a center portion of the first patch radiator. The antenna device further includes a plurality of conductive feeding pins connected to the first patch radiator and separated by at least one slot of a plurality of slots provides in the first patch radiator. The antenna device further includes a cell structure having a cavity that includes a polygonal-shaped base and a metallic fence arranged at four or more side walls of the cavity. The first patch radiator and the second patch radiators are arranged in the cavity of the cell structure and are at least partially surrounded by the metallic fence such that a plurality of antenna control parameters are decoupled from each other.
    Type: Application
    Filed: October 5, 2021
    Publication date: September 15, 2022
    Inventors: Nemat Dolatsha, Alfred Grau Besoli, Yifan Wang, Maryam Rofougaran, Ahmadreza Rofougaran
  • Patent number: 11444684
    Abstract: A repeater device includes a first antenna array having a plurality of antenna configuration modes, where each mode defines a unique configuration of one or more sub-arrays of a plurality of different sub-arrays of the first antenna array. The repeater device further includes control circuitry configured to select one of the plurality of antenna configuration modes. A first configuration of one or more sub-arrays of the first antenna array is activated based on the selected antenna configuration mode and a beam of radio frequency (RF) signal is directed to UE from the activated first configuration of the one or more sub-arrays. The beam of RF signal is directed to the UE present in first or second communication range such that one or more signal path parameters of the beam of RF signal are substantially equalized at the first and the second communication range.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: September 13, 2022
    Assignee: Movandi Corporation
    Inventors: Alfred Grau Besoli, Ahmadreza Rofougaran, Brima Ibrahim, Farid Shirinfar, Maryam Rofougaran, Nemat Dolatsha, Yifan Wang
  • Publication number: 20220271442
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Application
    Filed: May 12, 2022
    Publication date: August 25, 2022
    Inventors: Ahmadreza ROFOUGARAN, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Seunghwan YOON, Alfred Grau Besoli, Maryam ROFOUGARAN
  • Publication number: 20220263565
    Abstract: A repeater device includes a first antenna array on a first surface, a second antenna array on a second surface opposite to the first surface, and control circuitry. The first antenna array includes a plurality of first antenna elements and the second antenna array includes a plurality of second antenna elements, where each first antenna element is coupled to at least one second antenna element. The control circuitry selects at least one first antenna element and a corresponding second antenna element based on a first direction of signal reception with respect to the first antenna array. The selected first antenna element receives a beam of radio frequency (RF) signal in a first radiation pattern from a first network node in the first direction and corresponding second antenna element transmits the received beam of RF signal in a second radiation pattern to a second network node in a second direction.
    Type: Application
    Filed: September 14, 2021
    Publication date: August 18, 2022
    Inventors: Nemat Dolatsha, Alfred Grau Besoli, Yifan Wang, Ahmadreza Rofougaran
  • Patent number: 11394128
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: July 19, 2022
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Farid Shirinfar, Sam Gharavi, Michael Boers, Seunghwan Yoon, Alfred Grau Besoli, Maryam Rofougaran
  • Patent number: 11381301
    Abstract: An integrated repeater system that includes a repeater device having phased array antenna receivers that receives a mmWave radio frequency signal from a base station, and one or more phased array antenna transmitters that transmits the received mmWave radio frequency signal through a glass structure to a user equipment with a first level of transmission loss. Based on an impedance matching component provided in the integrated repeater system, the repeater device changes a filter response of the glass structure based on a dielectric property of the impedance matching component.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: July 5, 2022
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli
  • Patent number: 11362439
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: June 14, 2022
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Farid Shirinfar, Sam Gharavi, Michael Boers, Seunghwan Yoon, Alfred Grau Besoli, Maryam Rofougaran
  • Publication number: 20220069896
    Abstract: A repeater device includes a first antenna array having a plurality of antenna configuration modes, where each mode defines a unique configuration of one or more sub-arrays of a plurality of different sub-arrays of the first antenna array. The repeater device further includes control circuitry configured to select one of the plurality of antenna configuration modes. A first configuration of one or more sub-arrays of the first antenna array is activated based on the selected antenna configuration mode and a beam of radio frequency (RF) signal is directed to UE from the activated first configuration of the one or more sub-arrays. The beam of RF signal is directed to the UE present in first or second communication range such that one or more signal path parameters of the beam of RF signal are substantially equalized at the first and the second communication range.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 3, 2022
    Inventors: Alfred Grau Besoli, Ahmadreza Rofougaran, Brima Ibrahim, Farid SHIRINFAR, Maryam ROFOUGARAN, Nemat Dolatsha, Yifan Wang
  • Patent number: 11205855
    Abstract: A communication device includes a first lens and a feeder array. The first lens has a defined shape, a base, a first tubular membrane connected to the base, and a second membrane arranged as a cap on the first tubular membrane. The feeder array includes a plurality of antenna elements that are positioned in a specified proximal distance from the base of the first lens to receive a first lens-guided beam of input radio frequency (RF) signals through the second membrane of the first lens. The first lens of the defined shape covers the feeder array as a radome enclosure. A distribution of a gain from the received first lens-guided beam of input RF signals is substantially equalized across the feeder array to increase at least a reception sensitivity of the plurality of antenna elements of the feeder array.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: December 21, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Publication number: 20210384639
    Abstract: A communication device includes a system board that includes a plurality of chips. Each chip in plurality of chips includes a plurality of antennas. A system cover coupled to system board includes a plurality of lenses. Each lens is configured to cover an antenna of plurality of antennas as a radome enclosure. Each lens includes a base, and a first tubular membrane coupled to base. A second membrane coupled to first tubular membrane. First tubular membrane and Second membrane cause the lens to have a bell shape. A support structure coupled to first tubular membrane. Support structure facilitates coupling of plurality of lenses to system cover. Each chip comprises a feeder array that further comprises a plurality of antenna elements that are positioned at a proximal distance from base of a lens, A distribution of a gain of input RF signals is substantially equalized across plurality of antenna elements.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Ahmadreza ROFOUGARAN, Alfred Grau Besoli, Seunghwan YOON, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN, Enver Adas, Kartik SRIDHARAN
  • Publication number: 20210384640
    Abstract: A communication device includes a lens having a defined shape. A feeder array comprising a plurality of antenna elements that are positioned in a specified proximal distance from the lens to receive a lens-guided beam of input radio frequency (RF) signals through the lens. The specified proximal distance is less than a focal length of the lens. The lens covers the feeder array as a radome enclosure. A distribution of a gain from the received lens-guided beam of input RF signals is substantially equalized from a radiation surplus region to a radiation deficient region of the feeder array to increase at least a reception sensitivity of the plurality of antenna elements for at least the lens-guided beam of input RF signals, based on the defined shape of the lens and the specified proximal distance of the feeder array to the lens.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Ahmadreza ROFOUGARAN, Alfred Grau Besoli, Seunghwan YOON, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN, Enver Adas, Kartik SRIDHARAN
  • Publication number: 20210351516
    Abstract: A communication device includes a first lens, a feeder array, and control circuitry communicatively coupled to the feeder array. The first lens is associated with a defined shape, which further exhibits a defined distribution of dielectric constant. The feeder array includes a plurality of antenna elements that are positioned in proximity to the first lens. The control circuitry equalizes a distribution of a gain from the received first lens-guided beam of input RF signals across the feeder array and different scan directions of the plurality of antenna elements. The equalized distribution of gain is based on the defined distribution of dielectric constant within the first lens and the proximity of the feeder array to the first lens.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Applicant: Movandi Corporation
    Inventors: Ahmadreza ROFOUGARAN, Alfred Grau Besoli, Seunghwan YOON, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN, Enver Adas, Kartik Sridharan
  • Patent number: 11171426
    Abstract: A communication device includes a first lens and a feeder array. The first lens has a defined shape, a base, a first tubular membrane connected to the base, and a second membrane arranged as a cap on the first tubular membrane. The feeder array includes a plurality of antenna elements that are positioned in a specified proximal distance from the base of the first lens to receive a first lens-guided beam of input radio frequency (RF) signals through the second membrane of the first lens. The first lens of the defined shape covers the feeder array as a radome enclosure. A distribution of a gain from the received first lens-guided beam of input RF signals is substantially equalized across the feeder array to increase at least a reception sensitivity of the plurality of antenna elements of the feeder array.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 9, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Publication number: 20210336347
    Abstract: An antenna system includes a first substrate, a plurality of chips and a waveguide antenna element based beam forming phased array that includes a plurality of radiating waveguide antenna cells for millimeter wave communication. Each radiating waveguide antenna cell includes a plurality of pins where a first pin is connected with a body of a corresponding radiating waveguide antenna cell and the body corresponds to ground for the pins. The first pin includes a first and a second current path, the first current path being longer than the second current path. A first end of the radiating waveguide antenna cells is mounted on the first substrate, where the plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells.
    Type: Application
    Filed: May 25, 2021
    Publication date: October 28, 2021
    Inventors: Seunghwan YOON, Ahmadreza ROFOUGARAN, Sam GHARAVI, Kartik SRIDHARAN, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN, Alfred Grau Besoli, Enver Adas
  • Publication number: 20210328363
    Abstract: An antenna system, includes a first substrate, a plurality of chips, and a waveguide antenna element based beam forming phased array. The waveguide antenna element based beam forming phased array includes a plurality of radiating waveguide antenna cells. Each radiating waveguide antenna cell includes a plurality of pins that are connected to ground. A body of each radiating waveguide antenna cell corresponds to the ground. The plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming through a second end of the plurality of radiating waveguide antenna cells.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Inventors: Seunghwan YOON, Ahmadreza ROFOUGARAN, Sam GHARAVI, Kartik SRIDHARAN, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN, Alfred Grau Besoli, Enver Adas, Zhihui WANG
  • Patent number: 11145986
    Abstract: A communication device includes a first lens, a feeder array, and control circuitry communicatively coupled to the feeder array. The first lens is associated with a defined shape, which further exhibits a defined distribution of dielectric constant. The feeder array includes a plurality of antenna elements that are positioned in proximity to the first lens. The control circuitry equalizes a distribution of a gain from the received first lens-guided beam of input RF signals across the feeder array and different scan directions of the plurality of antenna elements. The equalized distribution of gain is based on the defined distribution of dielectric constant within the first lens and the proximity of the feeder array to the first lens.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: October 12, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Publication number: 20210297145
    Abstract: An integrated repeater system that includes a repeater device having phased array antenna receivers that receives a mmWave radio frequency signal from a base station, and one or more phased array antenna transmitters that transmits the received mmWave radio frequency signal through a glass structure to a user equipment with a first level of transmission loss. Based on an impedance matching component provided in the integrated repeater system, the repeater device changes a filter response of the glass structure based on a dielectric property of the impedance matching component.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli
  • Patent number: 11108167
    Abstract: An antenna system, includes a first substrate, a plurality of chips, and a waveguide antenna element based beam forming phased array. The waveguide antenna element based beam forming phased array has a unitary body that comprises a plurality of radiating waveguide antenna cells in a first layout for millimeter wave communication. Each radiating waveguide antenna cell comprises a plurality of pins that are connected with a body of a corresponding radiating waveguide antenna cell that acts as ground for the plurality of pins. A first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array, as the unitary body, in the first layout is mounted on the first substrate. The plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: August 31, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Seunghwan Yoon, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran, Alfred Grau Besoli, Enver Adas, Zhihui Wang