Patents by Inventor Alfred H. Stiller

Alfred H. Stiller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11858818
    Abstract: Described herein are processes for preparation of a carbon foam material, the processes including the steps of heating in a microwave heating apparatus a mixture including a coal material and at least one additional agent. The additional agent can be a flux agent such a carbohydrate syrup, a secondary flux agent, a lignocellulosic waste material, a conductive carbon compound, a solvent, and combinations thereof. Also described are processes for calcining a carbon foam material in a furnace, a microwave heating apparatus, or an inductive field heater. The described calcining process can impart electrical conductivity and mechanical strength to carbon foams. Also described are carbon foam materials, calcined carbon foams, and composite materials. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: January 2, 2024
    Assignee: West Virginia University
    Inventor: Alfred H. Stiller
  • Publication number: 20220248272
    Abstract: Method comprising providing at least one solid carbide chemical compound and reducing a metal cation with use of the solid carbide chemical compound. A method comprising producing elemental carbon material from the oxidation of carbide in at least one carbide chemical compound (e.g., calcium carbide) in at least one anode of an electrochemical cell apparatus, such as a galvanic cell apparatus. The cathode can be a variety of metals such as zinc or tin. The reaction can be carried out at room temperature and normal pressure. An external voltage also can be applied, and different forms of carbon can be produced depending on the reactants used and voltage applied. For carrying out the method, an apparatus comprising at least one galvanic cell comprising: at least one anode comprising at least one carbide chemical compound, and at least one cathode.
    Type: Application
    Filed: April 11, 2022
    Publication date: August 4, 2022
    Inventors: ALFRED H. STILLER, Christopher Yurchick
  • Patent number: 11306401
    Abstract: An apparatus containing at least one electrochemical cell with an electrode structure. The electrode structure contains at least one carbide chemical compound. The carbide chemical compound may be a salt-like carbide. The electrode may contain at least one electronically conductive element different from the carbide. Carbon compositions of various forms may be formed by the methods and apparatus using the electrode structure. Large pieces of pure carbon may be produced. Post-reaction processing of the carbon may be carried out such as exfoliation.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: April 19, 2022
    Assignee: West Virginia University Research Corporation
    Inventors: Alfred H. Stiller, Christopher L. Yurchick
  • Publication number: 20210180217
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, the disclosure, in one aspect, relates to carbon fibers with improved properties, methods of making the same, and compositions and articles comprising the same. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 17, 2021
    Inventor: Alfred H. STILLER
  • Publication number: 20210163291
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at temperatures from about 150° C. to about 750° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Application
    Filed: November 25, 2019
    Publication date: June 3, 2021
    Applicant: WEST VIRGINIA UNIVERSITY RESEARCH CORPORATION
    Inventor: Alfred H. STILLER
  • Publication number: 20210122640
    Abstract: Described herein are processes for preparation of a carbon foam material, the processes including the steps of heating in a microwave heating apparatus a mixture including a coal material and at least one additional agent. The additional agent can be a flux agent such a carbohydrate syrup, a secondary flux agent, a lignocellulosic waste material, a conductive carbon compound, a solvent, and combinations thereof. Also described are processes for calcining a carbon foam material in a furnace, a microwave heating apparatus, or an inductive field heater. The described calcining process can impart electrical conductivity and mechanical strength to carbon foams. Also described are carbon foam materials, calcined carbon foams, and composite materials. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 29, 2021
    Inventor: Alfred H. Stiller
  • Publication number: 20210114869
    Abstract: A method for producing elemental carbon and hydrogen gas directly from a hydrocarbon (for example, natural gas or methane) using a chemical reaction or series of reactions. In an aspect, other materials involved such as, for example, elemental magnesium, remain unchanged and function as a catalyst.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 22, 2021
    Inventor: Alfred H. STILLER
  • Patent number: 10906807
    Abstract: A method for producing elemental carbon and hydrogen gas directly from a hydrocarbon (for example, natural gas or methane) using a chemical reaction or series of reactions. In an aspect, other materials involved such as, for example, elemental magnesium, remain unchanged and function as a catalyst.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: February 2, 2021
    Assignee: West Virginia University Research Corporation
    Inventor: Alfred H. Stiller
  • Publication number: 20200325022
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at low temperatures below about 600° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Inventor: Alfred H. STILLER
  • Patent number: 10696555
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at low temperatures below about 600° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: June 30, 2020
    Assignee: WEST VIRGINIA UNIVERSITY RESEARCH CORPORATION
    Inventor: Alfred H. Stiller
  • Patent number: 10494264
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at temperatures from about 150° C. to about 750° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: December 3, 2019
    Assignee: West Virginia University Research Corporation
    Inventor: Alfred H. Stiller
  • Publication number: 20190241433
    Abstract: A method for producing elemental carbon and hydrogen gas directly from a hydrocarbon (for example, natural gas or methane) using a chemical reaction or series of reactions. In an aspect, other materials involved such as, for example, elemental magnesium, remain unchanged and function as a catalyst.
    Type: Application
    Filed: January 4, 2019
    Publication date: August 8, 2019
    Inventor: Alfred H. STILLER
  • Publication number: 20190119117
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at low temperatures below about 600° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Application
    Filed: September 24, 2018
    Publication date: April 25, 2019
    Inventor: Alfred H. STILLER
  • Patent number: 10207922
    Abstract: A method for producing elemental carbon and hydrogen gas directly from a hydrocarbon (for example, natural gas or methane) using a chemical reaction or series of reactions. In an aspect, other materials involved such as, for example, elemental magnesium, remain unchanged and function as a catalyst.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 19, 2019
    Assignee: WEST VIRGINIA UNIVERSITY RESEARCH CORPORATION
    Inventor: Alfred H. Stiller
  • Publication number: 20180370805
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at temperatures from about 150° C. to about 750° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Application
    Filed: June 28, 2018
    Publication date: December 27, 2018
    Inventor: Alfred H. STILLER
  • Patent number: 10144648
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at low temperatures below about 600° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: December 4, 2018
    Assignee: WEST VIRGINIA UNIVERSITY RESEARCH CORPORATION
    Inventor: Alfred H. Stiller
  • Patent number: 10035709
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at temperatures from about 150° C. to about 750° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: July 31, 2018
    Assignee: WEST VIRGINIA UNIVERSITY RESEARCH CORPORATION
    Inventor: Alfred H. Stiller
  • Publication number: 20180195181
    Abstract: Method comprising providing at least one solid carbide chemical compound and reducing a metal cation with use of the solid carbide chemical compound. A method comprising producing elemental carbon material from the oxidation of carbide in at least one carbide chemical compound (e.g., calcium carbide) in at least one anode of an electrochemical cell apparatus, such as a galvanic cell apparatus. The cathode can be a variety of metals such as zinc or tin. The reaction can be carried out at room temperature and normal pressure. An external voltage also can be applied, and different forms of carbon can be produced depending on the reactants used and voltage applied. For carrying out the method, an apparatus comprising at least one galvanic cell comprising: at least one anode comprising at least one carbide chemical compound, and at least one cathode.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 12, 2018
    Inventors: Alfred H. STILLER, Christopher L. YURCHICK
  • Patent number: 9909222
    Abstract: Method comprising providing at least one solid carbide chemical compound and reducing a metal cation with use of the solid carbide chemical compound. A method comprising producing elemental carbon material from the oxidation of carbide in at least one carbide chemical compound (e.g., calcium carbide) in at least one anode of an electrochemical cell apparatus, such as a galvanic cell apparatus. The cathode can be a variety of metals such as zinc or tin. The reaction can be carried out at room temperature and normal pressure. An external voltage also can be applied, and different forms of carbon can be produced depending on the reactants used and voltage applied. For carrying out the method, an apparatus comprising at least one galvanic cell comprising: at least one anode comprising at least one carbide chemical compound, and at least one cathode.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: March 6, 2018
    Assignee: WEST VIRGINIA UNIVERSITY RESEARCH CORPORATION
    Inventors: Alfred H. Stiller, Christopher L. Yurchick
  • Publication number: 20170320741
    Abstract: The disclosure provides for methods of oxidizing carbide anions, or negative ions, from salt like carbides at low temperatures below about 600° C. In another aspect, the disclosure provides for reactions with intermediate transition metal carbides. In yet another aspect, the disclosure provides for a system of reactions where salt-like carbide anions and intermediate carbide anions are oxidized to produce pure carbon of various allotropes.
    Type: Application
    Filed: June 9, 2017
    Publication date: November 9, 2017
    Inventor: Alfred H. STILLER