Patents by Inventor Alfred Paris

Alfred Paris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084235
    Abstract: An organomimetic device includes a microfluidic device that can be used to culture cells in its microfluidic channels. The organomimetic device can be part of dynamic system that can apply mechanical forces to the cells by modulating the microfluidic device and the flow of fluid through the microfluidic channels. The membrane in the organomimetic device can be modulated mechanically via pneumatic means and/or mechanical means. The organomimetic device can be manufactured by the fabrication of individual components separately, for example, as individual layers that can be subsequently laminated together.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 14, 2024
    Inventors: Jose Fernandez-Alcon, Norman Wen, Richard Novak, Donald E. Ingber, Geraldine A. Hamilton, Christopher Hinojosa, Karel Domansky, Daniel Levner, Guy Thompson, II, Kambez Hajipouran Benam, Remi Villenave, Thomas Umundum, Alfred Paris, Georg Bauer
  • Publication number: 20230122655
    Abstract: A microfluidic mixer, formed by two parts, a first part being a substrate having formations defining fluid channels on an outer surface that is directed towards a second part, which is a flexible layer. The flexile layer has formations defining a fluid channel which, when the flexible layer is positioned over the substrate so as to cover the fluid channels of the substrate provides a fluid communication path. A section of said communication path comprises at least first and second fluid channels for providing first and second fluids. The first and second fluid channels merge before an inlet of a mixing chamber. The mixing chamber comprises perturbation formations. An outlet of the mixing chamber is connected to an outlet fluid channel. The flexible layer comprises points for compression at the inlet and outlet of the mixing chamber for closing the merged fluid channel. The perturbation formations of the mixing chamber are vertically arranged vertically with respect to an inner surface.
    Type: Application
    Filed: September 8, 2022
    Publication date: April 20, 2023
    Inventors: Matthias Stangassinger, Michael Schmid, Daniel Horner, Alfred Paris
  • Patent number: 10888861
    Abstract: A microfluidic flow controller comprising a substrate having formations defining two or more fluid channels having channel fluid ports which are open at an outer surface of the substrate; and a flexible layer having formations defining a fluid channel which, when the flexible layer is positioned over the substrate so as to cover at least the channel fluid ports, provides a fluid communication path between the channel fluid ports but which, when a force is applied to press the flexible layer towards the substrate, deforms so as to inhibit fluid communication between the channel fluid ports.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: January 12, 2021
    Assignee: STRATEC Consumables Gmb
    Inventors: Wolfgang Reiter, Alfred Paris, Daniel Horner, Thomas Umundum, Thomas Buttinger
  • Publication number: 20180015469
    Abstract: A microfluidic flow controller comprising a substrate having formations defining two or more fluid channels having channel fluid ports which are open at an outer surface of the substrate; and a flexible layer having formations defining a fluid channel which, when the flexible layer is positioned over the substrate so as to cover at least the channel fluid ports, provides a fluid communication path between the channel fluid ports but which, when a force is applied to press the flexible layer towards the substrate, deforms so as to inhibit fluid communication between the channel fluid ports.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 18, 2018
    Inventors: Wolfgang Reiter, Alfred Paris, Daniel Horner, Thomas Umundum
  • Publication number: 20170327781
    Abstract: An organomimetic device includes a microfluidic device that can be used to culture cells in its microfluidic channels. The organomimetic device can be part of dynamic system that can apply mechanical forces to the cells by modulating the microfluidic device and the flow of fluid through the microfluidic channels. The membrane in the organomimetic device can be modulated mechanically via pneumatic means and/or mechanical means. The organomimetic device can be manufactured by the fabrication of individual components separately, for example, as individual layers that can be subsequently laminated together.
    Type: Application
    Filed: May 22, 2017
    Publication date: November 16, 2017
    Inventors: Jose Fernandez-Alcon, Norman Wen, Richard Novak, Donald E. Ingber, Geraldine A. Hamilton, Christopher Hinojosa, Karel Domansky, Daniel Levner, Guy Thompson, Kambez Hajipouran Benam, Remi Villenave, Thomas Umundum, Alfred Paris, Georg Bauer
  • Patent number: 9586810
    Abstract: The present invention relates to a polymeric substrate having a glass-like surface, in particular an etched-glass-like surface and to a chip made of at least one such polymeric substrate. The present invention also relates to a method of providing a polymeric substrate with an etched-glass-like surface. Moreover, the present invention relates to a kit for manufacturing a chip using such polymeric substrate. Moreover, the present invention relates to the use of a polymeric substrate having a glass-like surface, in particular an etched-glass-like surface for manufacturing a chip.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: March 7, 2017
    Assignees: Sony Corporation, Sony DADC Austria AG
    Inventors: Gerda Fuhrmann, Gabriele Nelles, Silvia Rosselli, Nikolaus Knorr, Alfred Paris, Maria Kaufmann, Georg Bauer
  • Publication number: 20160326477
    Abstract: An organomimetic device includes a microfluidic device that can be used to culture cells in its microfluidic channels. The organomimetic device can be part of dynamic system that can apply mechanical forces to the cells by modulating the microfluidic device and the flow of fluid through the microfluidic channels. The membrane in the organomimetic device can be modulated mechanically via pneumatic means and/or mechanical means. The organomimetic device can be manufactured by the fabrication of individual components separately, for example, as individual layers that can be subsequently laminated together.
    Type: Application
    Filed: December 19, 2014
    Publication date: November 10, 2016
    Inventors: Jose Fernandez-Alcon, Norman Wen, Richard Novak, Donald E. Ingber, Geraldine A. Hamilton, Christopher Hinojosa, Karel Domansky, Daniel Levner, Guy Thompson, II, Kambez Hajipouran Benam, Remi Villenave, Thomas Umundum, Alfred Paris, Georg Bauer
  • Patent number: 9188991
    Abstract: A microfluidic device comprising in sequence first, second and third layers of plastics materials. A microfluidic circuit including a laterally extending microfluidic channel is formed at the interface between the first and second layers by surface structure in one or both of the first and second layers. A via is formed in the third layer for supplying or removing fluid to or from the microfluidic circuit. A conduit is formed in the second layer to provide fluid communication between the microfluidic channel and the via. A weld is formed at the interface between the second and third layers in a continuous closed path around the via and forms a fluid-tight seal for fluid flow between the via and the microfluidic circuit.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: November 17, 2015
    Assignee: Sony DADC Austria AG
    Inventors: Michael Pingert, Dario Borovic, Alfred Paris
  • Publication number: 20140102546
    Abstract: A microfluidic device comprising in sequence first, second and third layers of plastics materials. A microfluidic circuit including a laterally extending microfluidic channel is formed at the interface between the first and second layers by surface structure in one or both of the first and second layers. A via is formed in the third layer for supplying or removing fluid to or from the microfluidic circuit. A conduit is formed in the second layer to provide fluid communication between the microfluidic channel and the via. A weld is formed at the interface between the second and third layers in a continuous closed path around the via and forms a fluid-tight seal for fluid flow between the via and the microfluidic circuit.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: Sony DADC Austria AG
    Inventors: Michael PINGERT, Dario BOROVIC, Alfred PARIS
  • Publication number: 20130121892
    Abstract: The present invention relates to a polymeric substrate having a glass-like surface, in particular an etched-glass-like surface and to a chip made of at least one such polymeric substrate. The present invention also relates to a method of providing a polymeric substrate with an etched-glass-like surface. Moreover, the present invention relates to a kit for manufacturing a chip using such polymeric substrate. Moreover, the present invention relates to the use of a polymeric substrate having a glass-like surface, in particular an etched-glass-like surface for manufacturing a chip.
    Type: Application
    Filed: August 1, 2011
    Publication date: May 16, 2013
    Applicants: Sony DADC Austria AG, Sony Corporation
    Inventors: Gerda Fuhrmann, Gabriele Nelles, Silvia Rosseli, Nikolaus Knorr, Alfred Paris, Maria Kaufmann, Georg Bauer
  • Publication number: 20120244043
    Abstract: The present invention relates to microfluidic devices that include a reliable seal between a substrate of the device and a fluid transport mechanism. The devices of the invention include at least one internal channel, and at least one port in fluid communication with the channel. A seal is associated with the port and is configured to receive a fluid transport mechanism. The seal is formed from an elastomeric material that is compatible for use with fluorinated oil and resists flaking and degradation.
    Type: Application
    Filed: January 30, 2012
    Publication date: September 27, 2012
    Inventors: Sean Leblanc, Akim F. Lennhoff, Bruce Neumann, Ali Aslam, Darren Link, Alfred Paris, Gottfried Reiter, Dario Borovic, Christian Poeschl