Patents by Inventor Alfred Stett

Alfred Stett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200016403
    Abstract: Aspects of the present invention relate to an implant device comprising a first implant part (18) configured for implantation into an eye (10) and a second implant part (21), wherein the eye (10) comprises a sclera (12), and the second implant part (21) is adapted to supply the first implant part (18) with energy transsclerally via an optical interface.
    Type: Application
    Filed: February 5, 2018
    Publication date: January 16, 2020
    Inventors: Alfred STETT, Sandra RUDORF, Ralf RUDORF, Henning HELMERS
  • Publication number: 20190022376
    Abstract: The present disclosure relates to an active retinal implant for implantation in an eye, comprising an array of stimulation electrodes that deliver stimulation signals to retinal cells. At least one signal generator is provided which generates at least one continuous sinusoidal stimulation signal that comprises at least one adjustable signal parameter, and the at least one signal generator is electrically coupled to at least one stimulation electrode.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 24, 2019
    Inventors: Günther Zeck, Thoralf Herrmann, Florian Jetter, Alfred Stett
  • Patent number: 9220899
    Abstract: An electrode for medical applications for neuromodulation and/or nerve stimulation and/or neurological signal detection, which electrode can be compressed and expanded in order to insert same into a hollow organ of a body and is or can be coupled to a current supply. The electrode has a compressible and expandable lattice structure including lattice webs, which form cells, wherein the lattice structure is or can be coupled to the current supply and forms at least one electrically conductive region and at least one electrically insulated region.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: December 29, 2015
    Assignee: Acandis GmbH & Co. KG
    Inventors: Giorgio Cattaneo, Alfred Stett, Alireza Gharabaghi
  • Publication number: 20130226272
    Abstract: An electrode for medical applications for neuromodulation and/or nerve stimulation and/or neurological signal detection, which electrode can be compressed and expanded in order to insert same into a hollow organ of a body and is or can be coupled to a current supply. The electrode has a compressible and expandable lattice structure including lattice webs, which form cells, wherein the lattice structure is or can be coupled to the current supply and forms at least one electrically conductive region and at least one electrically insulated region.
    Type: Application
    Filed: August 26, 2011
    Publication date: August 29, 2013
    Applicant: ACANDIS GMBH & CO. KG
    Inventors: Giorgio Cattaneo, Alfred Stett, A. Gharabaghi
  • Publication number: 20130206454
    Abstract: An electrode for intravascular medical applications for neuromodulation and/or nerve stimulation and/or neurological signal detection, wherein the electrode can be compressed and expanded in order to insert same into a hollow organ of a body and is or can be coupled to a current supply. A compressible and expandable lattice structure is provided, which has cells formed from lattice webs and is or can be coupled to the current supply, the lattice structure being obtained at least partially by physical vapor deposition.
    Type: Application
    Filed: August 26, 2011
    Publication date: August 15, 2013
    Applicant: ACANDIS GMBH & CO. KG
    Inventors: Giorgio Cattaneo, Alfred Stett, A. Gharabaghi
  • Patent number: 7751896
    Abstract: An active retina implant has a multiplicity of pixel elements that convert incident light into electric stimulation signals for cells of the retina with which stimulation electrodes are to make contact. Each pixel element is provided with at least one image cell that converts incident light into electric signals, there being provided at least one amplifier whose input is connected to the image cell and whose output is connected to at least one stimulation electrode to which it supplies a stimulation signal. Also provided is an energy supply which provides externally coupled external energy as supply voltage for the image cells and the amplifiers. The image cell has a logarithmic characteristic according to which incident light of specific intensity is converted into electric signals of specific amplitude. The stimulation signal is supplied in the form of analog voltage pulses of specific pulse length and pulse spacings, the pulse amplitude being a function of the intensity of the incident light.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: July 6, 2010
    Assignee: Retina Implant AG
    Inventors: Heinz-Gerhard Graf, Alexander Dollberg, Bernd Hoefflinger, Wilfried Nisch, Hugo Haemmerle, Alfred Stett, Martin Stelzle, Eberhart Zrenner
  • Publication number: 20090192571
    Abstract: On a device 10 with a base body 32 at least one electrode 17 is arranged which serves to exchange electrical or chemical signals with surrounding tissue 34, the electrode 17 being covered by a protective layer 33 which is of such a nature that, after contact with the tissue 34, it decomposes in a defined manner and at least to such an extent that the electrode 17 comes into direct contact with the tissue 34.
    Type: Application
    Filed: April 9, 2009
    Publication date: July 30, 2009
    Inventors: Alfred Stett, Wilfried Nisch
  • Publication number: 20080153146
    Abstract: An apparatus for electrically contacting biological cells suspended in a liquid has a substrate having at least one opening and an electrode for electrically contacting a cell immobilized above the opening. A contact unit with a contact tip is arranged below said opening. A top end of the contact tip projects into the opening in such a way that it comes to bear against a cell membrane of the immobilized cell. The contact tip has a contact channel which ends at its top end. A hydrodynamic low pressure can be exerted upon the cell membrane via the contact channel, and the electrode is electrically connected to the contact channel. In a method for electrically contacting biological cells suspended in a liquid, a cell is immobilized above an opening provided in a substrate, and the immobilized cell is contacted via at least one electrode. For contacting the immobilized cell, a hydrodynamic low pressure is generated acting on a cell membrane through a contact tip projecting into the opening.
    Type: Application
    Filed: March 4, 2008
    Publication date: June 26, 2008
    Applicant: Cytocentrics AG
    Inventors: Alfred Stett, Wilfried Nisch, Hugo Hammerle, Thomas Knott
  • Patent number: 7361500
    Abstract: An apparatus for electrically contacting biological cells suspended in a liquid has a substrate having at least one opening and an electrode for electrically contacting a cell immobilized above the opening. A contact unit with a contact tip is arranged below said opening. A top end of the contact tip projects into the opening in such a way that it comes to bear against a cell membrane of the immobilized cell. The contact tip has a contact channel which ends at its top end. A hydrodynamic low pressure can be exerted upon the cell membrane via the contact channel, and the electrode is electrically connected to the contact channel. In a method for electrically contacting biological cells suspended in a liquid, a cell is immobilized above an opening provided in a substrate, and the immobilized cell is contacted via at least one electrode. For contacting the immobilized cell, a hydrodynamic low pressure is generated acting on a cell membrane through a contact tip projecting into the opening.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: April 22, 2008
    Assignee: Cytocentrics AG
    Inventors: Alfred Stett, Wilfried Nisch, Hugo Hämmerle, Thomas Knott
  • Patent number: 7272447
    Abstract: An electrode arrangement for electrical stimulation of biological material has at least one stimulation electrode via which the biological material can be fed a stimulus signal. Furthermore, a counter electrode is present which forms a counter pole to the stimulation electrode, one sensor electrode is provided with the aid of which it is possible to determine a polarization voltage across the stimulation electrode.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: September 18, 2007
    Assignee: Retina Implant GmbH
    Inventors: Alfred Stett, Wilfried Nisch, Martin Stelzle, Eberhart Zrenner
  • Publication number: 20060184245
    Abstract: An active retina implant has a multiplicity of pixel elements that convert incident light into electric stimulation signals for cells of the retina with which stimulation electrodes are to make contact. Each pixel element is provided with at least one image cell that converts incident light into electric signals, there being provided at least one amplifier whose input is connected to the image cell and whose output is connected to at least one stimulation electrode to which it supplies a stimulation signal. Also provided is an energy supply which provides externally coupled external energy as supply voltage for the image cells and the amplifiers. The image cell has a logarithmic characteristic according to which incident light of specific intensity is converted into electric signals of specific amplitude. The stimulation signal is supplied in the form of analog voltage pulses of specific pulse length and pulse spacings, the pulse amplitude being a function of the intensity of the incident light.
    Type: Application
    Filed: December 19, 2005
    Publication date: August 17, 2006
    Inventors: Heinz-Gerhard Graf, Alexander Dollberg, Bernd Hoefflinger, Wilfried Nisch, Hugo Haemmerle, Alfred Stett, Martin Stelzle, Eberhart Zrenner
  • Publication number: 20060032746
    Abstract: The present invention relates to a method and a device for contacting a microfluidic structure. The device comprises a receptacle for the microfluidic structure and also a contact unit. According to one aspect of the invention, the contact unit has at least one hollow needle, which is designed for piercing a layer of elastic material which is provided on the microfluidic structure.
    Type: Application
    Filed: August 12, 2005
    Publication date: February 16, 2006
    Inventors: Thomas Knott, Alfred Stett, Peter Sygall, Peter von Stiphout
  • Patent number: 6989089
    Abstract: A microelement device has a plurality of microelements, which may be configured as microelectrodes, arranged on a substrate and adapted for making contact to cells present in a liquid environment. The cells are guided onto the microelectrodes, are isolated or are mechanically attracted to the microelectrodes. A negative-pressure force or a hydrodynamic force may be applied on the cells. Also described are a method for making contact to the cells, and a method for manufacturing the microelement device is disclosed.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: January 24, 2006
    Assignee: NMI Naturwissenschaftliches und Medizinisches Institut an der Universitat Tubingen in Reutlingen
    Inventors: Wilfried Nisch, Alfred Stett, Ulrich Egert, Martin Stelzle
  • Patent number: 6984297
    Abstract: A method and a device are used for carrying out measurements on cells located in a liquid environment. Each cell is positioned with an underside of its membrane on a surface having a channel running through it. A negative pressure is established to aspirate the cells. Each cell is electrically scanned via at least one electrode which is spaced apart from the cell. The negative pressure is preferably established in a pulse-like manner to rupture the membrane in such a way that the cell interior enclosed by the membrane is connected to the channel.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: January 10, 2006
    Assignees: NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Bayer AG
    Inventors: Wilfried Nisch, Martin Stelzle, Alfred Stett, Thomas Krahn, Thomas Müller, Christoph Methfessel
  • Patent number: 6847847
    Abstract: A retina implant including a chip adapted to be implanted into the interior of eye in subretinal contact with the retina. The chip has a plurality of pixel elements on a side thereof facing the lens for receiving an image projected into the retina and a plurality of electrodes for stimulating retina cells. The implants further includes a receiver coil for inductively coupling thereinto electromagnetic energy. The receiver coil coupled to a means for converting an alternating voltage induced into the receiver coil in a direct voltage suited for supplying the chip. The receiver coil is configured as a component separate from the chip, and for being positioned on the eye ball outside the sclera. The chip is connected to the receiver coil via a connecting lead which, in the implanted condition interconnects the interior and the exterior of the eye ball.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: January 25, 2005
    Assignee: Eberhard-Karls Universitat Tubingen, Universitatsklinikum
    Inventors: Wilfried Nisch, Alfred Stett, Markus Schubert, Michael Graf, Heinz Gerhard Graf, Hugo Hämmerle, Eberhart Zrenner, Martin Stelzle, Helmut Sachs
  • Publication number: 20040267344
    Abstract: An electrode arrangement for electrical stimulation of biological material has at least one stimulation electrode via which the biological material can be fed a stimulus signal. Furthermore, a counter electrode is present which forms a counter pole to the stimulation electrode, one sensor electrode is provided with the aid of which it is possible to determine a polarization voltage across the stimulation electrode.
    Type: Application
    Filed: April 15, 2004
    Publication date: December 30, 2004
    Inventors: Alfred Stett, Wilfried Nisch, Martin Stelzle
  • Patent number: 6804560
    Abstract: A retina implant, comprises a surface and a plurality of pixel elements disposed on the surface for receiving and converting incoming light energy into electric energy. At least one amplifier is provided in the implant, and a plurality of stimulation electrodes supplied via the at least one amplifier as a function of signals received by the pixel elements. At least one light-sensitive reference element is coupled with the at least one amplifier for controlling amplification thereof as a function of light energy impinging on the at least one reference element.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: October 12, 2004
    Assignee: Eberhard-Karls-Universitat Tubingen Universitatsklinikum
    Inventors: Wilfried Nisch, Alfred Stett, Markus Schubert, Michael Graf, Heinz Gerhard Graf, Hugo Hammerle, Eberhart Zrenner, Martin Stelzle
  • Publication number: 20030153067
    Abstract: An apparatus for electrically contacting biological cells suspended in a liquid has a substrate having at least one opening and an electrode for electrically contacting a cell immobilized above the opening. A contact unit with a contact tip is arranged below said opening. A top end of the contact tip projects into the opening in such a way that it comes to bear against a cell membrane of the immobilized cell. The contact tip has a contact channel which ends at its top end. A hydrodynamic low pressure can be exerted upon the cell membrane via the contact channel, and the electrode is electrically connected to the contact channel. In a method for electrically contacting biological cells suspended in a liquid, a cell is immobilized above an opening provided in a substrate, and the immobilized cell is contacted via at least one electrode. For contacting the immobilized cell, a hydrodynamic low pressure is generated acting on a cell membrane through a contact tip projecting into the opening.
    Type: Application
    Filed: January 3, 2003
    Publication date: August 14, 2003
    Inventors: Alfred Stett, Wilfried Nisch, Hugo Hammerle, Thomas Knott
  • Publication number: 20030080314
    Abstract: A method and a device are used for carrying out measurements on cells located in a liquid environment. Each cell is positioned with an underside of its membrane on a surface having a channel running through it. A negative pressure is established to aspirate the cells. Each cell is electrically scanned via at least one electrode which is spaced apart from the cell. The negative pressure is preferably established in a pulse-like manner to rupture the membrane in such a way that the cell interior enclosed by the membrane is connected to the channel.
    Type: Application
    Filed: November 20, 2002
    Publication date: May 1, 2003
    Inventors: Wilfried Nisch, Martin Stelzle, Alfred Stett, Thomas Krahn, Thomas Muller, Christoph Methfessel
  • Publication number: 20020198573
    Abstract: A retina implant to be implanted into an eye having an eye ball with an exterior and an interior, a sclera, a lens, and a retina is disclosed. The implant comprises a chip adapted to be implanted into the interior of the eye in contact with the retina. The chip, when in an implanted condition, has a plurality of pixel elements on a side thereof facing the lens for receiving an image projected onto the retina. The chip, further, comprises a plurality of electrodes for stimulating retina cells. The electrodes are located on the side of the chip having the pixel elements thereon, such that the chip is adapted to be implanted into a subretinal space of the eye. The implant, further, comprises a receiver coil for inductively coupling thereinto electromagnetic energy. The receiver coil is coupled to a means for converting an alternating voltage induced into the receiver coil in a direct voltage suited for supplying the chip.
    Type: Application
    Filed: November 7, 2001
    Publication date: December 26, 2002
    Inventors: Wilfried Nisch, Alfred Stett, Markus Schubert, Michael Graf, Heinz Gerhard Graf, Hugo Hammerle, Eberhart Zrenner, Martin Stelzle, H. Sachs