Patents by Inventor Alfred W. Mak

Alfred W. Mak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9031685
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: May 12, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence C. Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Publication number: 20140130739
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 15, 2014
    Inventors: Barry L. CHIN, Alfred W. MAK, Lawrence C. LEI, Ming XI, Hua CHUNG, Ken Kaung LAI, Jeong Soo BYUN
  • Patent number: 8626330
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: January 7, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence Chung-Lai Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Patent number: 8123860
    Abstract: An apparatus for cyclical depositing of thin films on semiconductor substrates, comprising a process chamber having a gas distribution system with separate paths for process gases and an exhaust system synchronized with operation of valves dosing the process gases into a reaction region of the chamber.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Randhir P. S. Thakur, Alfred W. Mak, Ming Xi, Walter Benjamin Glenn, Ahmad A. Khan, Ayad A. Al-Shaikh, Avgerinos V. Gelatos, Salvador P. Umotoy
  • Publication number: 20120006265
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: BARRY L. CHIN, Alfred W. Mak, Lawrence Chung-Lai Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Patent number: 8027746
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: September 27, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence Chung-Lai Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Publication number: 20110111603
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 12, 2011
    Inventors: BARRY L. CHIN, ALFRED W. MAK, LAWRENCE CHUNG-LAI LEI, MING XI, HUA CHUNG, KEN KAUNG LAI, JEONG SOO BYUN
  • Patent number: 7879151
    Abstract: Method and apparatus for supporting and transferring a substrate in a semiconductor wafer processing system are provided. In one aspect, an apparatus is provided for supporting a substrate comprising a cover ring comprising a base having a bore disposed therethough, the base having an upper surface and one or more raised surfaces disposed adjacent the bore, wherein the raised surface comprise one or more first substrate support members disposed adjacent an edge of the bore and a capture ring disposed on the cover ring, the capture ring comprising a semi-circular annular ring having an inner perimeter corresponding to the bore of the cover ring and one or more second substrate support members disposed on the inner perimeter and adapted to receive a substrate, wherein the capture ring is adapted to mate with the cover ring and form one contiguous raised surface on the cover ring.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: February 1, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Khiem Nguyen, Peter Satitpunwaycha, Alfred W. Mak
  • Patent number: 7860597
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: December 28, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence Chung-Lai Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Patent number: 7846840
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: December 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung
  • Patent number: 7709385
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 4, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Publication number: 20100099270
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
    Type: Application
    Filed: December 23, 2009
    Publication date: April 22, 2010
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence Chung-Lai Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Publication number: 20100093170
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 15, 2010
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung
  • Patent number: 7695563
    Abstract: In one embodiment, a method for depositing a tungsten material on a substrate within a process chamber is provided which includes exposing the substrate to a gaseous mixture containing a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the substrate during a tungsten deposition process. The process further includes removing reaction by-products generated during the tungsten deposition process from the process chamber, exposing the substrate to the reducing gas to react with residual tungsten precursor within the process chamber during a soak process, removing reaction by-products generated during the soak process from the process chamber, and repeating the tungsten deposition process and the soak process during a cyclic deposition process. In the examples, the reducing gas may contain diborane or silane.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, Ping Jian, Jong Hyun Yoo, Ken Kaung Lai, Alfred W. Mak, Robert L. Jackson, Ming Xi
  • Patent number: 7682984
    Abstract: A photomask etch chamber, which includes a substrate support member disposed inside the chamber. The substrate support member is configured to support a photomask substrate. The chamber further includes a ceiling disposed on the chamber and an endpoint detection system configured to detect a peripheral region of the photomask substrate.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: March 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Khiem K. Nguyen, Peter Satitpunwaycha, Alfred W. Mak
  • Patent number: 7674715
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Patent number: 7660644
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: February 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Barry L. Chin, Alfred W. Mak, Lawrence Chung-Lai Lei, Ming Xi, Hua Chung, Ken Kaung Lai, Jeong Soo Byun
  • Patent number: 7605083
    Abstract: Embodiments of the invention provide methods for depositing tungsten materials. In one embodiment, a method for forming a composite tungsten film is provided which includes positioning a substrate within a process chamber, forming a tungsten nucleation layer on the substrate by subsequently exposing the substrate to a tungsten precursor and a reducing gas containing hydrogen during a cyclic deposition process, and forming a tungsten bulk layer during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The PE-CVD process includes exposing the substrate to a deposition gas containing the tungsten precursor while depositing the tungsten bulk layer over the tungsten nucleation layer. In some example, the tungsten nucleation layer has a thickness of less than about 100 ?, such as about 15 ?. In other examples, a carrier gas containing hydrogen is constantly flowed into the process chamber during the cyclic deposition process.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: October 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20090156004
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventors: MORIS KORI, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung
  • Publication number: 20090156003
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventors: MING XI, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau