Patents by Inventor Alfred Yi Cho
Alfred Yi Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7092421Abstract: An optoelectronic transducer comprises a unipolar, intraband active region and a micro-cavity resonator. The resonator includes a 2D array of essentially equally spaced regions that exhibits resonant modes. Each of the spaced regions has a depth that extends through the active region and has an average refractive index that is different from that of the active region. The refractive index contrast, the spacing of the spaced regions, and the dimensions of the spaced regions are mutually adapted so that the array acts as a micro-cavity resonator and so that at least one frequency of the resonant modes of the array falls within the spectrum of an optoelectronic parameter of the active region (i.e., the gain spectrum where the transducer is a laser; the absorption spectrum where the transducer is a photodetector). In a first embodiment, the transducer is an ISB laser, whereas in a second embodiment it is a unipolar, intraband photodetector.Type: GrantFiled: August 30, 2003Date of Patent: August 15, 2006Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F. Gmachl, Oskar Jon Painter, Arthur Mike Sergent, Deborah Lee Sivco, Kartik Srinivasan, Donald Milan Tennant, Mariano Troccoli
-
Patent number: 7010010Abstract: A broadband CLE capable of operation simultaneously at multiple wavelengths comprises: a core region including a multiplicity or cascade of stages, each stage including a radiative transition region. A first group of stages emits radiation at a first wavelength and at a first aggregate intensity per group, and a second group of stages emits radiation at a second wavelength and at a second aggregate intensity per group lower than the first intensity. The invention is characterized in that the second group has more stages than said first group, and the per-stage intensity of the first group is greater than that of the second group. This design reduces the difference between said first and second aggregate intensities. In one embodiment, groups that are located at or near to the ends of the cascade have more stages than groups that are centrally located within the cascade regardless of their wavelength.Type: GrantFiled: June 19, 2003Date of Patent: March 7, 2006Assignee: Lucent Technologies, Inc.Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Milton L. Peabody, Arthur Mike Sergent, Deborah Lee Sivco, Alexander Soibel
-
Patent number: 6940639Abstract: An optical device comprises a cavity resonator and an intracavity ridge waveguide. The ridge waveguide includes a monolithically integrated intersubband core region and a nonlinear mixing region (NMR). In response to external pumping energy the core region generates laser light at a first frequency and in a first transverse mode. In response to the laser light the NMR generates parametric light at a second frequency and in a second transverse mode. For phase matching the effective-refractive-index-versus-ridge-width characteristics of the modes of the laser and the parametric light intersect one another at a phase matching width and so that, at greater widths, the effective refractive index of the mode of the higher frequency light is less than that of the lower frequency light. For true phase matching the width of the ridge is made to be essentially equal to the phase matching width.Type: GrantFiled: March 29, 2004Date of Patent: September 6, 2005Assignee: Lucent Technologies Inc.Inventors: Alexey Belyanin, Alfred Yi Cho, Claire F. Gmachl, Oana Malis, Milton L. Peabody, Jr., Arthur Mike Sergent, Deborah Lee Sivco
-
Patent number: 6891187Abstract: A quantum well structure is provided that includes two or more quantum well layers coupled by at least one barrier layer such that at least one of a piezo-electric field and a pyro-electric field is produced. The quantum well structure is sufficiently doped to cause a Fermi energy to be located between ground states and excited states of the coupled quantum well layers. The quantum well structure can be incorporated into a layered semiconductor to form optical devices such as a laser or optical amplifier.Type: GrantFiled: April 19, 2002Date of Patent: May 10, 2005Assignee: Lucent Technologies Inc.Inventors: Alfred Yi Cho, Claire F. Gmachl, Hock Min Ng
-
Patent number: 6836499Abstract: Techniques for amplifying light produced by a quantum cascade laser are described. An assembly according to the present invention includes an optical amplifier having an optical input and an optical output. The optical output has an area significantly greater than that of the optical output and the geometry of the amplifier is such that the amplifier widens from the optical input to the optical output. The optical amplifier is formed of a layered waveguide structure which achieves quantum confinement of electrons and photons within the active region. A distributed feedback laser is suitably coupled to the optical amplifier at the optical input of the amplifier. The widening of the amplifier makes available a large number of electrons, so that the amplifier is able to produce many photons resulting from stimulated transitions caused by introduction of light to the optical input of the amplifier, even if the great majority of the transitions occur nonradiatively.Type: GrantFiled: May 24, 2002Date of Patent: December 28, 2004Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Deborah Lee Sivco, Mariano Troccoli
-
Patent number: 6816530Abstract: A monolithic apparatus has a laser optical cavity. The laser optical cavity has a multi-layer structure that includes a first active semiconductor multi-layer and a second semiconductor multi-layer. The second semiconductor multi-layer is located laterally adjacent to the first active semiconductor multi-layer. The first active semiconductor multi-layer includes a sequence of quantum well structures that produce light of a lasing frequency in response to being electrically pumped. The second semiconductor multi-layer includes a sequence of quantum well structures and is configured to both absorb light of the lasing frequency and produce one of parametric light and harmonic light in response to absorbing light of the lasing frequency.Type: GrantFiled: September 30, 2002Date of Patent: November 9, 2004Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F Gmachl, Nina Owschimikow, Deborah Lee Sivco
-
Patent number: 6795467Abstract: The measurement of intersubband electroluminescence (ISB-EL) in unipolar quantum cascade lasers is achieved by forming a longitudinal cleave through the active region and waveguide of the QC laser device, exposing a complete side face of the device, including the active region. The conventional laser facets at the entrance and exit of the active region are coated with a highly reflective material and the emission from the exposed side face is measured. In theory, the sideface emission would comprise only the ISB-EL spontaneous emission, but some additional laser emission (due to scattering in the imperfect waveguide structure) also exits along this sideface. Spatial filtering and/or polarization monitoring can be used to differentiate the laser emission from the ISB-EL spontaneous emission.Type: GrantFiled: April 4, 2001Date of Patent: September 21, 2004Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F. Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci
-
Patent number: 6760354Abstract: In an intersubband light emitter, at least two injection/relaxation (I/R) regions contiguous with the same RT region have different doping levels. Preferably, one I/R region has a doping level that is at least 100 times lower than that of the other I/R region. In one embodiment, one I/R region is undoped, whereas the other I/R region is doped.Type: GrantFiled: March 12, 2002Date of Patent: July 6, 2004Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Rafaelle Colombelli, Claire F. Gmachl, Trinesha Shenika Mosely, Axel Straub, Deborah Lee Sivco, Mariano Troccoli
-
Patent number: 6728282Abstract: An optical device includes a stack of at least two different intersubband (ISB) optical sub-devices in which the gain/loss profiles of the individual ISB sub-devices are mutually adapted, or engineered, so as to generate a predetermined overall function for the combination. We define this combination device as being heterogeneous since not all of the individual ISB sub-devices are identical to one another. Illustratively, the parameters of each individual ISB sub-device that might be subject to this engineering process include: the peak energy of the ISB optical transitions (emission or absorption) associated with each RT region, the position of each sub-device in the stack; the oscillator strengths of these ISB transitions; the energy bandwidth of each transition; and the total length of the RT and I/R regions of each ISB sub-device.Type: GrantFiled: June 18, 2001Date of Patent: April 27, 2004Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Rafaelle Colombelli, Claire F. Gmachl, Hock Min Ng, Deborah Lee Sivco
-
Publication number: 20040066823Abstract: A monolithic apparatus has a laser optical cavity. The laser optical cavity has a multi-layer structure that includes a first active semiconductor multi-layer and a second semiconductor multi-layer. The second semiconductor multi-layer is located laterally adjacent to the first active semiconductor multi-layer. The first active semiconductor multi-layer includes a sequence of quantum well structures that produce light of a lasing frequency in response to being electrically pumped. The second semiconductor multi-layer includes a sequence of quantum well structures and is configured to both absorb light of the lasing frequency and produce one of parametric light and harmonic light in response to absorbing light of the lasing frequency.Type: ApplicationFiled: September 30, 2002Publication date: April 8, 2004Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F. Gmachl, Nina Owschimikow, Deborah Lee Sivco
-
Patent number: 6690699Abstract: An optical gain medium has first and second active layers and an injector layer interposed between the first and second active layers. The active layers have upper minibands and lower minibands. The injector layer has a miniband that transports charge carriers from the lower miniband of the first active layer to an excited state in the upper miniband of the second active layer in response to application of a voltage across the optical gain medium.Type: GrantFiled: February 21, 2002Date of Patent: February 10, 2004Inventors: Federico Capasso, Alfred Yi Cho, Albert Lee Hutchinson, Gaetano Scamarcio, Deborah Lee Sivco, Mariano Troccoli
-
Publication number: 20030219054Abstract: Techniques for amplifying light produced by a quantum cascade laser are described. An assembly according to the present invention includes an optical amplifier having an optical input and an optical output. The optical output has an area significantly greater than that of the optical output and the geometry of the amplifier is such that the amplifier widens from the optical input to the optical output. The optical amplifier is formed of a layered waveguide structure which achieves quantum confinement of electrons and photons within the active region. A distributed feedback laser is suitably coupled to the optical amplifier at the optical input of the amplifier. The widening of the amplifier makes available a large number of electrons, so that the amplifier is able to produce many photons resulting from stimulated transitions caused by introduction of light to the optical input of the amplifier, even if the great majority of the transitions occur nonradiatively.Type: ApplicationFiled: May 24, 2002Publication date: November 27, 2003Applicant: Lucent Technologies, Inc.Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Deborah Lee Sivco, Mariano Troccoli
-
Publication number: 20030174749Abstract: In an intersubband light emitter, at least two injection/relaxation (I/R) regions contiguous with the same RT region have different doping levels. Preferably, one I/R region has a doping level that is at least 100 times lower than that of the other I/R region. In one embodiment, one I/R region is undoped, whereas the other I/R region is doped.Type: ApplicationFiled: March 12, 2002Publication date: September 18, 2003Inventors: Federico Capasso, Alfred Yi Cho, Rafaelle Colombelli, Claire F. Gmachl, Trinesha Shenika Mosely, Axel Straub, Deborah Lee Sivco, Mariano Troccoli
-
Patent number: 6563852Abstract: A self-mode-locking (SML) mid-infrared (5 and 8 &mgr;m) quantum cascade laser is formed that comprises both a relatively thin dielectric insulating layer (i.e., less than one-half micron in thickness) overlaid with an optically highly lossy (i.e., absorbing) layer, with a relatively long (approximately 3.5 mm) optical waveguide. Evidence of mode-locking is obtained from the measured optical spectra and corresponding interferograms, as well as from the rf spectra of the photocurrent detected with a fast quantum-well infrared photodetector. An estimate for the pulse width of approximately 3 psec is inferred from these data.Type: GrantFiled: May 8, 2000Date of Patent: May 13, 2003Assignee: Lucent Technologies Inc.Inventors: James Nelson Baillargeon, Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Roberto Paiella, Deborah Lee Sivco
-
Patent number: 6556604Abstract: The RT regions of an ISB light emitter comprise pre-biased SLs and a multiplicity of split quantum wells (SPQWs). A SPQW is a quantum well that is divided into a multiplicity of sub-wells by a first barrier layer sufficiently thin that the upper and lower energy states are split beyond their natural broadening and contribute to different minibands in each RT region. In contrast, adjacent SPQWs are coupled to one another by second barrier layers. The thicknesses of the latter layers are chosen so that minibands are created across each RT region. In one embodiment, the emitter includes an I/R region between adjacent RT regions, and in another embodiment the I/R regions are omitted.Type: GrantFiled: November 8, 2000Date of Patent: April 29, 2003Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Sung-Nee George Chu, Claire F. Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci, Michael Clement Wanke
-
Publication number: 20030042478Abstract: A quantum well structure is provided that includes two or more quantum well layers coupled by at least one barrier layer such that at least one of a piezo-electric field and a pyro-electric field is produced. The quantum well structure is sufficiently doped to cause a Fermi energy to be located between ground states and excited states of the coupled quantum well layers. The quantum well structure can be incorporated into a layered semiconductor to form optical devices such as a laser or optical amplifier.Type: ApplicationFiled: April 19, 2002Publication date: March 6, 2003Inventors: Alfred Yi Cho, Claire F. Gmachl, Hock Min Ng
-
Patent number: 6501783Abstract: A surface plasmon laser structure is formed to include a DFB structure as the metal carrying layer, thus forming a single mode surface plasmon laser. The DFB structure comprises a multiple layer metallic surface guiding structure (for example, titanium stripes covered with a layer of gold. forming alternating Ti/Au—Au stripes). The active region, in one embodiment, may comprise a quantum cascade structure.Type: GrantFiled: February 24, 2000Date of Patent: December 31, 2002Assignee: Lucent Technologies Inc.Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
-
Publication number: 20020191658Abstract: An optical device includes a stack of at least two different intersubband (ISB) optical sub-devices in which the gain/loss profiles of the individual ISB sub-devices are mutually adapted, or engineered, so as to generate a predetermined overall function for the combination. We define this combination device as being heterogeneous since not all of the individual ISB sub-devices are identical to one another. Illustratively, the parameters of each individual ISB sub-device that might be subject to this engineering process include: the peak energy of the ISB optical transitions (emission or absorption) associated with each RT region, the position of each sub-device in the stack; the oscillator strengths of these ISB transitions; the energy bandwidth of each transition; and the total length of the RT and I/R regions of each ISB sub-device.Type: ApplicationFiled: June 18, 2001Publication date: December 19, 2002Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F. Gmachl, Hock Min Ng, Deborah Lee Sivco
-
Publication number: 20020146049Abstract: The measurement of intersubband electroluminescence (ISB-EL) in unipolar quantum cascade lasers is achieved by forming a longitudinal cleave through the active region and waveguide of the QC laser device, exposing a complete side face of the device, including the active region. The conventional laser facets at the entrance and exit of the active region are coated with a highly reflective material and the emission from the exposed side face is measured. In theory, the sideface emission would comprise only the ISB-EL spontaneous emission, but some additional laser emission (due to scattering in the imperfect waveguide structure) also exits along this sideface. Spatial filtering and/or polarization monitoring can be used to differentiate the laser emission from the ISB-EL spontaneous emission.Type: ApplicationFiled: April 4, 2001Publication date: October 10, 2002Inventors: Federico Capasso, Alfred Yi Cho, Raffaele Colombelli, Claire F. Gmachl, Albert Lee Hutchinson, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci
-
Patent number: 6463088Abstract: In a mesa geometry semiconductor laser, a patterned dielectric coating used to define the stripe geometry contact on the top the mesa and to provide significant waveguiding comprises a chalcogenide glass. Applications to intersubband (e.g., quantum cascade) lasers are specifically described.Type: GrantFiled: July 7, 2000Date of Patent: October 8, 2002Assignee: Lucent Technologies Inc.Inventors: James Nelson Baillargeon, Federico Capasso, Alfred Yi Cho, Claire Gmachl, Albert Lee Hutchinson, Harold Yoonsung Hwang, Roberto Paiella, Arthur Mike Sergent, Deborah Lee Sivco, Alessandro Tredicucci