Patents by Inventor Ali A. Kheir

Ali A. Kheir has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230365479
    Abstract: Processes for converting C8 aromatic hydrocarbons. In some embodiments, a process for converting a hydrocarbon feed that can include C8 aromatic hydrocarbons can include feeding the hydrocarbon feed into a conversion zone and contacting the hydrocarbon feed at least partly in a liquid phase with an isomerization catalyst composition in the conversion zone under conversion conditions to effect isomerization of at least a portion of the C8 aromatic hydrocarbons to produce a conversion product rich in para-xylene. In some embodiments, the isomerization catalyst composition can include a zeolite (preferably a ZSM-5 zeolite) that can have a silica (SiO2) to alumina (AI2O3) molar ratio of 10 to 100, a total surface area of 200 m2/g to 700 m2/g, a micropore surface area of 50 m2/g to 600 m2/g, and an external surface area of 55 m2/g to 550 m2/g.
    Type: Application
    Filed: September 1, 2021
    Publication date: November 16, 2023
    Inventors: Eric D. Metzger, Ali A. Kheir, Maria Milina, Kathleen M. Keville
  • Publication number: 20230023923
    Abstract: Disclosed are catalyst compositions comprising two or more metal elements with high performances for selective alkyl-demethylation of C2+-hydrocarbyl-substituted aromatics, processes for making such catalyst compositions, and alkyl-demethylation processes using same. Also disclosed are preferred processes for making alkyl-demethylation catalyst compositions including a high-temperature calcination step, and preferred alkyl-demethylation processes having a high H2/HC molar ratio.
    Type: Application
    Filed: December 1, 2020
    Publication date: January 26, 2023
    Inventors: Chuansheng Bai, Ali A. Kheir, Eric D. Metzger, Christian A. Diaz Urrutia, Meha Rungta, Umar Aslam
  • Publication number: 20230021410
    Abstract: Catalyst compositions to perform selective alkyl-demethylation of C2+-hydrocarbyl-substituted aromatic hydrocarbon may exhibit a hydrogen chemisorption of at least 15% and comprise an oxide support material selected from the group consisting of an alkaline earth metal oxide, silica, a composite of an alkaline earth metal oxide and Al2O3, a composite of ZnO and Al2O3, a lanthanide oxide, a composite of a lanthanide oxide and Al2O3, and combinations and mixtures of two or more thereof; and a transition metal element dispersed upon the oxide support material. Alkyl-demethylation processes of a C6+ aromatic hydrocarbon-containing stream comprising C2+-hydrocarbyl-substituted aromatic hydrocarbons may comprise contacting the catalyst compositions in an alkyl-demethylation zone under alkyl-demethylation conditions to form an alkyl-demethylated aromatic hydrocarbon as an effluent exiting the alkyl-demethylation zone.
    Type: Application
    Filed: November 16, 2020
    Publication date: January 26, 2023
    Inventors: Umar Aslam, Meha Rungta, Chuansheng Bai, Ali A. Kheir, Paul Podsiadlo
  • Publication number: 20220144725
    Abstract: Novel MEL framework type zeolites can be made to have small crystallite sizes and desirable silica/SiO2 molar ratios. Catalyst compositions comprising such MEL framework type zeolites can be particularly advantageous in isomerization C8 aromatic mixtures. An isomerization process for converting C8 aromatic hydrocarbons can advantageously utilize a catalyst composition comprising a MEL framework type zeolite.
    Type: Application
    Filed: March 25, 2020
    Publication date: May 12, 2022
    Inventors: Paul Podsiadlo, Eric D. Metzger, Wenyih F. Lai, Ali A. Kheir, Dominick A. Zurlo, Jocelyn A. Gilcrest, Kathleen M. Keville
  • Publication number: 20220134318
    Abstract: Novel MEL framework type zeolites can be made to have small crystallite sizes and desirable silica/SiCb molar ratios. Catalyst compositions comprising such MEL framework type zeolites can be particularly advantageous in isomerization C8 aromatic mixtures. An isomerization process for converting C8 aromatic hydrocarbons can advantageously utilize a catalyst composition comprising a MEL framework type zeolite.
    Type: Application
    Filed: March 25, 2020
    Publication date: May 5, 2022
    Inventors: Wenyih F. Lai, Paul Podsiadlo, Eric D. Metzger, Ivy D. Johnson, Ali A. Kheir, Dominick A. Zurlo, Kathleen M. Keville
  • Patent number: 10870610
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: December 22, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, Steven W. Levine, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Patent number: 10487023
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 26, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Publication number: 20190225561
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.
    Type: Application
    Filed: August 18, 2017
    Publication date: July 25, 2019
    Inventors: Kun Wang, Lorenzo C. DeCaul, Steven W. Levine, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Publication number: 20190169092
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.
    Type: Application
    Filed: August 18, 2017
    Publication date: June 6, 2019
    Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Patent number: 10017433
    Abstract: Processes for selectively alkylating and/or dealkylating one ring of cyclohexylbenzyl and/or biphenyl compounds are provided. Such selective alkylation and/or dealkylation takes place through a transalkylation reaction between the cyclohexylbenzyl compound and a substituted or unsubstituted benzene, which replaces the phenyl moiety of the cyclohexylbenzyl compound. The transalkylated cyclohexylbenzyl may be dehydrogenated to give a corresponding biphenyl compound. The same reaction steps can be utilized with respect to biphenyl compounds by first partially hydrogenating one phenyl ring of the biphenyl compound, thereby obtaining a corresponding cyclohexylbenzyl compound, which may undergo the transalkylation and, optionally, subsequent dehydrogenation.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 10, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Neeraj Sangar, Tan-Jen Chen, Emiel de Smit, Ali A. Kheir, Aaron B. Pavlish
  • Publication number: 20180050971
    Abstract: Processes for selectively alkylating and/or dealkylating one ring of cyclohexylbenzyl and/or biphenyl compounds are provided. Such selective alkylation and/or dealkylation takes place through a transalkylation reaction between the cyclohexylbenzyl compound and a substituted or unsubstituted benzene, which replaces the phenyl moiety of the cyclohexylbenzyl compound. The transalkylated cyclohexylbenzyl may be dehydrogenated to give a corresponding biphenyl compound. The same reaction steps can be utilized with respect to biphenyl compounds by first partially hydrogenating one phenyl ring of the biphenyl compound, thereby obtaining a corresponding cyclohexylbenzyl compound, which may undergo the transalkylation and, optionally, subsequent dehydrogenation.
    Type: Application
    Filed: December 16, 2015
    Publication date: February 22, 2018
    Inventors: Michael Salciccioli, Neeraj Sangar, Tan-Jen Chen, Emiel de Smit, Ali A. Kheir, Aaron B. Pavlish
  • Patent number: 9896393
    Abstract: In a process for producing dialkylbiphenyl compounds, a feed comprising substituted cyclohexylbenzene isomers having the formula (I): wherein each of R1 and R2 is an alkyl group and wherein the feed comprises m % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the feed; is transalkylated with a compound of formula (II): to produce a transalkylation product comprising substituted cyclohexylbenzene isomers having the formula (I) and including n % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the transalkylation product, wherein n<m. At least part of the transalkylation product is then dehydrogenated under conditions effective to convert at least part of the substituted cyclohexylbenzene isomers in the transalkylation product to dialkylbiphenyl compounds.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: February 20, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Tan-Jen Chen, Neeraj Sangar, Ali A. Kheir, Aaron B. Pavlish
  • Patent number: 9758447
    Abstract: In a process for dehydrogenating cyclohexylbenzene and/or alkyl-substituted cyclohexylbenzene compounds, a dehydrogenation catalyst comprising at least one Group 10 metal compound on a support is heated in the presence of hydrogen from a first temperature from 0° C. to 200° C. to a second, higher temperature from 60° C. to 500° C. at a ramp rate no more than 100° C./hour. The dehydrogenation catalyst is contacted with hydrogen at the second temperature for a time from 3 to 300 hours to produce an activated dehydrogenation catalyst. A feed comprising cyclohexylbenzene and/or an alkyl-substituted cyclohexylbenzene compound is then contacted with hydrogen in the presence of the activated dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising biphenyl and/or an alkyl-substituted biphenyl compound.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: September 12, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Gregory J. De Martin, Michael Salciccioli, Neeraj Sangar, Aaron B. Pavlish, Ali A. Kheir, Gary D. Mohr
  • Patent number: 9708230
    Abstract: In a process for producing biphenyl compounds, a Cn aromatic hydrocarbon may be hydroalkylated to give C2n cycloalkylaromatic compounds and byproduct Cn saturated cyclic hydrocarbons. The C2n cycloalkylaromatic compounds are dehydrogenated to provide the biphenyl compounds. The Cn saturated cyclic hydrocarbons may also be dehydrogenated back to the corresponding Cn aromatic hydrocarbon, which may be recycled to provide additional feed. Although both the intermediate C2n cycloalkylaromatic compounds and the byproduct Cn saturated cyclic hydrocarbons should be dehydrogenated, at least part of the dehydrogenation of the Cn saturated cyclic hydrocarbons should take place in the absence of C2n or greater hydrocarbons. Thus, dehydrogenation of the byproduct Cn saturated cyclic hydrocarbons should take place at least in part separately from dehydrogenation of the C2n cycloalkylaromatic compounds.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 18, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Jihad M. Dakka, Neeraj Sangar, Lorenzo C. DeCaul, Ali A. Kheir
  • Patent number: 9688602
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently an integer from 1 to 3, is contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound. The dehydrogenation catalyst comprises an element or compound thereof from Group 10 of the Periodic Table of Elements deposited on a refractory support, such as alumina.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 27, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Chuansheng Bai, James J. Tanke, Gregory J. De Martin, Mary T. Van Nostrand, Michael Salciccioli, Ali A. Kheir, Neeraj Sangar
  • Publication number: 20160280616
    Abstract: In a process for producing biphenyl compounds, a Cn aromatic hydrocarbon may be hydroalkylated to give C2n cycloalkylaromatic compounds and byproduct Cn saturated cyclic hydrocarbons. The C2n cycloalkylaromatic compounds are dehydrogenated to provide the biphenyl compounds. The Cn saturated cyclic hydrocarbons may also be dehydrogenated back to the corresponding Cn aromatic hydrocarbon, which may be recycled to provide additional feed. Although both the intermediate C2n cycloalkylaromatic compounds and the byproduct Cn saturated cyclic hydrocarbons should be dehydrogenated, at least part of the dehydrogenation of the Cn saturated cyclic hydrocarbons should take place in the absence of C2n or greater hydrocarbons. Thus, dehydrogenation of the byproduct Cn saturated cyclic hydrocarbons should take place at least in part separately from dehydrogenation of the C2n cycloalkylaromatic compounds.
    Type: Application
    Filed: December 21, 2015
    Publication date: September 29, 2016
    Inventors: Michael Salciccioli, Jihad M. Dakka, Neeraj Sangar, Lorenzo C. DeCaul, Ali A. Kheir
  • Publication number: 20160115095
    Abstract: In a process for dehydrogenating cyclohexylbenzene and/or alkyl-substituted cyclohexylbenzene compounds, a dehydrogenation catalyst comprising at least one Group 10 metal compound on a support is heated in the presence of hydrogen from a first temperature from 0° C. to 200° C. to a second, higher temperature from 60° C. to 500° C. at a ramp rate no more than 100° C./hour. The dehydrogenation catalyst is contacted with hydrogen at the second temperature for a time from 3 to 300 hours to produce an activated dehydrogenation catalyst. A feed comprising cyclohexylbenzene and/or an alkyl-substituted cyclohexylbenzene compound is then contacted with hydrogen in the presence of the activated dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising biphenyl and/or an alkyl-substituted biphenyl compound.
    Type: Application
    Filed: October 8, 2015
    Publication date: April 28, 2016
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Gregory J. De Martin, Michael Salciccioli, Neeraj Sangar, Aaron B. Pavlish, Ali A. Kheir, Gary D. Mohr
  • Publication number: 20150361011
    Abstract: In a process for producing dialkylbiphenyl compounds, a feed comprising substituted cyclohexylbenzene isomers having the formula (I): wherein each of R1 and R2 is an alkyl group and wherein the feed comprises m % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the feed; is transalkylated with a compound of formula (II): to produce a transalkylation product comprising substituted cyclohexylbenzene isomers having the formula (I) and including n % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the transalkylation product, wherein n<m. At least part of the transalkylation product is then dehydrogenated under conditions effective to convert at least part of the substituted cyclohexylbenzene isomers in the transalkylation product to dialkylbiphenyl compounds.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 17, 2015
    Inventors: Michael Salciccioli, Tan-Jen Chen, Neeraj Sangar, Ali A. Kheir, Aaron B. Pavlish
  • Publication number: 20140275607
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently an integer from 1 to 3, is contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound. The dehydrogenation catalyst comprises an element or compound thereof from Group 10 of the Periodic Table of Elements deposited on a refractory support, such as alumina.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventors: Jihad M. Dakka, Chuansheng Bai, James J. Tanke, Gregory J. De Martin, Mary T. Van Nostrand, Michael Salciccioli, Ali A. Kheir, Neeraj Sangar