Patents by Inventor Ali Dhinojwala

Ali Dhinojwala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9095639
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: August 4, 2015
    Assignee: The University of Akron
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Publication number: 20140302249
    Abstract: A method of preparing a fiber with periodically spaced beads includes the steps of: coating a base fiber with a settable coating; thereafter allowing the settable coating to form periodically spaced beads on the base fiber; and stabilizing the periodically spaced beads into periodically spaced beads thus creating a fiber with beads-on-a-string morphology.
    Type: Application
    Filed: August 31, 2012
    Publication date: October 9, 2014
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Ali Dhinojwala, Vasav Sahni, Disha Vinod Labhasetwar
  • Publication number: 20140213130
    Abstract: A method for creating a superhydrophobic coated nanoporous assembly includes the steps of: providing a nanoporous assembly formed of discrete and/or continuous structures that provide a morphology defining pores of less than 1 micron between neighboring discrete and continuous structures; bringing gaseous plasma precursors in the presence of the nanoporous assembly and in the presence of a plasma generator; employing the plasma generator to convert the gaseous plasma precursors to the plasma state; and permitting the plasma precursors to deposit as a coating on the nanoporous assembly through plasma polymerization techniques the deposition thereof preserving the porous structure of the nanoporous assembly, the deposited coating exhibiting a surface energy of less than 30 dynes/cm.
    Type: Application
    Filed: July 9, 2012
    Publication date: July 31, 2014
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Ali Dhinojwala, Sunny Sethi, Ila Badge
  • Patent number: 8535791
    Abstract: Aligned carbon nanotube-polymer composite materials, systems and methods include a substrate that carries an adhesive coating thereon. A plurality of carbon nanostructures are adhered to the substrate by the adhesive coating, such that the nanostructures are formed into a predetermined architecture, such that the architecture of the nanostructures defines at least one orientation for a plurality of nanostructures, and defies the approximate spacing between the nanostructures and/or groups of nanostructures. The adherence of the carbon nanostructures in the adhesive coating stabilizes the predetermined architecture of the nanostructures, such that the architecture renders the composite material superhydrophobic.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: September 17, 2013
    Assignees: The University of Akron, Rensselaer Polytechnical Institute
    Inventors: Ali Dhinojwala, Pulickel M. Ajayan, Sunny Sethi
  • Publication number: 20120235097
    Abstract: A method of fabricating a cathodic portion of a field emission display includes the steps of producing an array of substantially parallel carbon nanotubes attached at one end to a substantially planar substrate. Then, embedding the nanotubes in a polymer matrix that extends to a plane of attachment of the nanotubes to the planar substrate, wherein the polymer matrix allows an end of the nanotubes distal from the ends attached to the planar substrate, uncovered by the polymer matrix in order to allow electrical contact with each other and with an attached conductor. Next, detaching the array from the planar substrate, thus producing a surface having the formerly attached ends of the nanotubes substantially in a plane, and then attaching the conductor to the array of nanotube ends, uncovered by the polymer matrix and distal to the plane.
    Type: Application
    Filed: September 20, 2010
    Publication date: September 20, 2012
    Inventors: Ali Dhinojwala, Sunny Sethi
  • Publication number: 20120231270
    Abstract: A method of implementing a carbon nanotube thermal interface material onto a heat sink that includes growing carbon nanotubes on said heat sink by chemical vapor deposition and compressing the carbon nanotubes onto metallic surfaces to increase a contact surface area between the carbon nanotubes and the metallic surfaces. The increase in the contact surface area is the area of the carbon nanotubes that is in contact with the metallic surfaces.
    Type: Application
    Filed: November 5, 2010
    Publication date: September 13, 2012
    Inventors: Ali Dhinojwala, Sunny Sethi
  • Publication number: 20110297904
    Abstract: The invention relates to silk or other materials formed to have predetermined contraction/relaxation characteristics, wherein the contraction/relaxation characteristics are initiated by exposure thereof to predetermined humidity characteristics in the adjacent atmosphere. The materials may comprise a single silk fiber, a bundle of fibers of a predetermined size or diameter, a meshwork of fibers forming a predetermined configuration such as one or more sheets, bundles or other bodies. In this manner, the material can be scaled across a size range of any desired magnitude to produce predetermined force and/or displacement characteristics in association therewith.
    Type: Application
    Filed: May 1, 2009
    Publication date: December 8, 2011
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Ali Dhinojwala, Todd Blackledge, Ingi Agnarsson
  • Publication number: 20110241536
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nano structures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 6, 2011
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Publication number: 20110212297
    Abstract: This is provided a hydrophobic or superhydrophobic surface configuration and method of forming a hydrophobic or superhydrophobic material on a metallic substrate. The surface configuration comprises a metallic substrate having a carbon nanotube/carbon fibers configuration grown thereon, with the carbon nanotubes/carbon fibers configuration having a heirarchial structure formed to have a predetermined roughness in association with the surface. The method comprises providing a metallic substrate having a predetermined configuration, and growing a plurality of carbon nanotubes/fibers or other nanostructures formed into a predetermined architecture supported on the substrate.
    Type: Application
    Filed: November 13, 2009
    Publication date: September 1, 2011
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Ali Dhinojwala, Sunny Sethi
  • Patent number: 7927666
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 19, 2011
    Assignees: The University of Akron, Rensselaer Polytechnic Institute
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Publication number: 20100075024
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Application
    Filed: June 30, 2006
    Publication date: March 25, 2010
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Publication number: 20090269560
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, self-cleaning applications, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within an adhesive, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications.
    Type: Application
    Filed: February 11, 2009
    Publication date: October 29, 2009
    Applicants: The University of Akron, Rensselaer Polytechnical Institute
    Inventors: Ali Dhinojwala, Pulickel M. Ajayan, Sunny Sethi
  • Publication number: 20080280137
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Application
    Filed: February 15, 2007
    Publication date: November 13, 2008
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Patent number: 6022942
    Abstract: There is provided herein an optical storage media which has low VBR. In a preferred embodiment, there is provided an optical disk comprising a genus of copolycarbonates, including copolyestercarbonates, which have excellent physical and optical properties. Said copolycarbonates have proportions of structural units which fall within a specific composition range, and said range defines certain materials, a large percentage of which can be molded into optical disks having the desired optical properties, including low VBR.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: February 8, 2000
    Assignee: General Electric Company
    Inventors: Kenichi Ishiwa, Henricus H. M. van Hout, Ali Dhinojwala, Niles R. Rosenquist, Paul D. Sybert, Steven F. Hubbard, Paul C. Raymond, III, Joseph A. King, Jr., Gary C. Davis