Patents by Inventor ALI MOHARRER

ALI MOHARRER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11989657
    Abstract: Herein, a computer generates and evaluates many preprocessor configurations for a window preprocessor that transforms a training timeseries dataset for an ML model. With each preprocessor configuration, the window preprocessor is configured. The window preprocessor then converts the training timeseries dataset into a configuration-specific point-based dataset that is based on the preprocessor configuration. The ML model is trained based on the configuration-specific point-based dataset to calculate a score for the preprocessor configuration. Based on the scores of the many preprocessor configurations, an optimal preprocessor configuration is selected for finally configuring the window preprocessor, after which, the window preprocessor can optimally transform a new timeseries dataset such as in an offline or online production environment such as for real-time processing of a live streaming timeseries.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: May 21, 2024
    Assignee: Oracle International Corporation
    Inventors: Nikan Chavoshi, Anatoly Yakovlev, Hesam Fathi Moghadam, Venkatanathan Varadarajan, Sandeep Agrawal, Ali Moharrer, Jingxiao Cai, Sanjay Jinturkar, Nipun Agarwal
  • Publication number: 20240086763
    Abstract: Techniques for computing global feature explanations using adaptive sampling are provided. In one technique, first and second samples from an dataset are identified. A first set of feature importance values (FIVs) is generated based on the first sample and a machine-learned model. A second set of FIVs is generated based on the second sample and the model. If a result of a comparison between the first and second FIV sets does not satisfy criteria, then: (i) an aggregated set is generated based on the last two FIV sets; (ii) a new sample that is double the size of a previous sample is identified from the dataset; (iii) a current FIV set is generated based on the new sample and the model; (iv) determine whether a result of a comparison between the current and aggregated FIV sets satisfies criteria; repeating (i)-(iv) until the result of the last comparison satisfies the criteria.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: Jeremy Plassmann, Anatoly Yakovlev, Sandeep R. Agrawal, Ali Moharrer, Sanjay Jinturkar, Nipun Agarwal
  • Patent number: 11868854
    Abstract: Herein are techniques that train regressor(s) to predict how effective would a machine learning model (MLM) be if trained with new hyperparameters and/or dataset. In an embodiment, for each training dataset, a computer derives, from the dataset, values for dataset metafeatures. The computer performs, for each hyperparameters configuration (HC) of a MLM, including landmark HCs: configuring the MLM based on the HC, training the MLM based on the dataset, and obtaining an empirical quality score that indicates how effective was said training the MLM when configured with the HC. A performance tuple is generated that contains: the HC, the values for the dataset metafeatures, the empirical quality score and, for each landmark configuration, the empirical quality score of the landmark configuration and/or the landmark configuration itself. Based on the performance tuples, a regressor is trained to predict an estimated quality score based on a given dataset and a given HC.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: January 9, 2024
    Assignee: Oracle International Corporation
    Inventors: Ali Moharrer, Venkatanathan Varadarajan, Sam Idicula, Sandeep Agrawal, Nipun Agarwal
  • Patent number: 11451670
    Abstract: Herein are machine learning (ML) techniques for unsupervised training with a corpus of signaling system 7 (SS7) messages having a diversity of called and calling parties, operation codes (opcodes) and transaction types, numbering plans and nature of address indicators, and mobile country codes and network codes. In an embodiment, a computer stores SS7 messages that are not labeled as anomalous or non-anomalous. Each SS7 message contains an opcode and other fields. For each SS7 message, the opcode of the SS7 message is stored into a respective feature vector (FV) of many FVs that are based on respective unlabeled SS7 messages. The FVs contain many distinct opcodes. Based on the FVs that contain many distinct opcodes and that are based on respective unlabeled SS7 messages, an ML model such as a reconstructive model such as an autoencoder is unsupervised trained to detect an anomalous SS7 message.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 20, 2022
    Assignee: Oracle International Corporation
    Inventors: Hamed Ahmadi, Ali Moharrer, Venkatanathan Varadarajan, Vaseem Akram, Nishesh Rai, Reema Hingorani, Sanjay Jinturkar, Nipun Agarwal
  • Publication number: 20220191332
    Abstract: Herein are machine learning (ML) techniques for unsupervised training with a corpus of signaling system 7 (SS7) messages having a diversity of called and calling parties, operation codes (opcodes) and transaction types, numbering plans and nature of address indicators, and mobile country codes and network codes. In an embodiment, a computer stores SS7 messages that are not labeled as anomalous or non-anomalous. Each SS7 message contains an opcode and other fields. For each SS7 message, the opcode of the SS7 message is stored into a respective feature vector (FV) of many FVs that are based on respective unlabeled SS7 messages. The FVs contain many distinct opcodes. Based on the FVs that contain many distinct opcodes and that are based on respective unlabeled SS7 messages, an ML model such as a reconstructive model such as an autoencoder is unsupervised trained to detect an anomalous SS7 message.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 16, 2022
    Inventors: Hamed Ahmadi, Ali Moharrer, Venkatanathan Varadarajan, Vaseem Akram, Nishesh Rai, Reema Hingorani, Sanjay Jinturkar, Nipun Agarwal
  • Publication number: 20220121955
    Abstract: Herein, a computer generates and evaluates many preprocessor configurations for a window preprocessor that transforms a training timeseries dataset for an ML model. With each preprocessor configuration, the window preprocessor is configured. The window preprocessor then converts the training timeseries dataset into a configuration-specific point-based dataset that is based on the preprocessor configuration. The ML model is trained based on the configuration-specific point-based dataset to calculate a score for the preprocessor configuration. Based on the scores of the many preprocessor configurations, an optimal preprocessor configuration is selected for finally configuring the window preprocessor, after which, the window preprocessor can optimally transform a new timeseries dataset such as in an offline or online production environment such as for real-time processing of a live streaming timeseries.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Inventors: Nikan Chavoshi, Anatoly Yakovlev, Hesam Fathi Moghadam, Venkatanathan Varadarajan, Sandeep Agrawal, Ali Moharrer, Jingxiao Cai, Sanjay Jinturkar, Nipun Agarwal
  • Publication number: 20220043681
    Abstract: Herein, a computer receives a new training dataset for a target ML model. Proven or unproven respective values of hyperparameters of the target ML model are selected. An already-trained ML metamodel predicts an amount of memory that the target ML model will need, when configured with the respective values of the hyperparameters, to train with the new training dataset. In an embodiment, supervised training of the ML metamodel is as follows. The ML metamodel receives feature vectors that each contains distinct details of a respective past training of the target ML model of many and varied trainings of the target ML model. Those distinct details of each past training includes: respective values of the hyperparameters, and respective values of metafeatures of a respective training dataset of many training datasets. Each feature vector is labeled with a respective amount of memory that the target ML model needed during the respective past training.
    Type: Application
    Filed: August 4, 2020
    Publication date: February 10, 2022
    Inventors: Ali Moharrer, Sandeep R. Agrawal, Venkatanathan Varadarajan, Sanjay Jinturkar, Nipun Agarwal
  • Publication number: 20210390466
    Abstract: A proxy-based automatic non-iterative machine learning (PANI-ML) pipeline is described, which predicts machine learning model configuration performance and outputs an automatically-configured machine learning model for a target training dataset. Techniques described herein use one or more proxy models—which implement a variety of machine learning algorithms and are pre-configured with tuned hyperparameters—to estimate relative performance of machine learning model configuration parameters at various stages of the PANI-ML pipeline. The PANI-ML pipeline implements a radically new approach of rapidly narrowing the search space for machine learning model configuration parameters by performing algorithm selection followed by algorithm-specific adaptive data reduction (i.e., row- and/or feature-wise dataset sampling), and then hyperparameter tuning.
    Type: Application
    Filed: October 30, 2020
    Publication date: December 16, 2021
    Inventors: Venkatanathan Varadarajan, Sandeep R. Agrawal, Hesam Fathi Moghadam, Anatoly Yakovlev, Ali Moharrer, Jingxiao Cai, Sanjay Jinturkar, Nipun Agarwal, Sam Idicula, Nikan Chavoshi
  • Publication number: 20200380378
    Abstract: Herein are techniques that train regressor(s) to predict how effective would a machine learning model (MLM) be if rained with new hyperparameters and/or dataset. In an embodiment, for each training dataset, a computer derives, from the dataset, values for dataset metafeatures. The computer performs, for each hyperparameters configuration (HC) of a MLM, including landmark HCs: configuring the MLM based on the HC, training the MLM based on the dataset, and obtaining an empirical quality score that indicates how effective was said training the MLM when configured with the HC. A performance tuple is generated that contains: the HC, the values for the dataset metafeatures, the empirical quality score and, for each landmark configuration, the empirical quality score of the landmark configuration and/or the landmark configuration itself. Based on the performance tuples, a regressor is trained to predict an estimated quality score based on a given dataset and a given HC.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 3, 2020
    Inventors: ALI MOHARRER, VENKATANATHAN VARADARAJAN, SAM IDICULA, SANDEEP AGRAWAL, NIPUN AGARWAL