Patents by Inventor Ali Tasdighi Far

Ali Tasdighi Far has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10789046
    Abstract: Multipliers and Multiply-Accumulate (MAC) circuits are fundamental building blocks in signal processing, including in emerging applications such as machine learning (ML) and artificial intelligence (AI) that predominantly utilize digital-mode multipliers and MACs. Generally, digital multipliers and MACs can operate at high speed with high resolution, and synchronously. As the resolution and speed of digital multipliers and MACs increase, generally the dynamic power consumption and chip size of digital implementations increases substantially that makes them impractical for some ML and AI segments, including in portable, mobile, near edge, or near sensor applications.
    Type: Grant
    Filed: January 19, 2020
    Date of Patent: September 29, 2020
    Inventor: Ali Tasdighi Far
  • Patent number: 10700695
    Abstract: Multipliers are fundamental building blocks in signal processing, including in emerging applications such as machine learning (ML) and artificial intelligence (AI) that predominantly utilize digital-mode multipliers. Generally, digital multipliers can operate at high speed with high precision, and synchronously. As the precision and speed of digital multipliers increase, generally the dynamic power consumption and chip size of digital implementations increases substantially that makes solutions unsuitable for some ML and AI segments, including in portable, mobile, or near edge and near sensor applications. The present invention discloses embodiments of multipliers that arrange data-converters to perform the multiplication function, operating in mixed-mode (both digital and analog), and capable of low power consumptions and asynchronous operations, which makes them suitable for low power ML and AI applications.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 30, 2020
    Inventor: Ali Tasdighi Far
  • Patent number: 10594334
    Abstract: Multipliers are fundamental building blocks in signal processing, including in emerging applications such as machine learning (ML) and artificial intelligence (AI) that predominantly utilize digital-mode multipliers. Generally, digital multipliers can operate at high speed with high precision, and synchronously. As the precision and speed of digital multipliers increase, generally the dynamic power consumption and chip size of digital implementations increases substantially that makes solutions unsuitable for some ML and AI segments, including in portable, mobile, or near edge and near sensor applications. The present invention discloses embodiments of multipliers that arrange data-converters to perform the multiplication function, operating in mixed-mode (both digital and analog), and capable of low power consumptions and asynchronous operations, which makes them suitable for low power ML and AI applications.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 17, 2020
    Inventor: Ali Tasdighi Far
  • Patent number: 10581448
    Abstract: A family of current mode analog to digital converters, or TiADC, utilizing methods, circuits, and apparatuses, are disclosed with the following benefits: (1) There are normal and random non-systematic mismatch between devices in silicon manufacturing, that introduce non-linearity in current mode analog to digital converter's, or iADC, reference network. The iADC's linearity is improved by utilizing a thermometer current mode signal conditioning method, SCM. Successive applications of the SCM effectuates a segmented current reference network to function like a thermometer network, which operates based on the function of summation. Having a TiADC with a thermometer reference network, where current segments are summed or accumulated incrementally, would inherently reduce the impact of statistical distribution of component's random mismatch on the iADC's non-linearity.
    Type: Grant
    Filed: February 3, 2019
    Date of Patent: March 3, 2020
    Inventor: Ali Tasdighi Far
  • Patent number: 10560058
    Abstract: Methods, circuits, and apparatuses that provide Buffer Amplifier, containing Amplifiers and Buffer Drivers, one or more of the following: ultra low power Buffer Amplifier, capable of having high gain, low noise, high speed, near rail-to-rail input-output voltage span, high sink-source current drive capability for an external load, and able to operate at low power supply voltages. Methods, circuits, and apparatuses that provide regulated cascode (RGC) current mirrors (CM) capable of operating at low power supply and having wide input-output voltage spans.
    Type: Grant
    Filed: October 27, 2018
    Date of Patent: February 11, 2020
    Inventor: Ali Tasdighi Far
  • Patent number: 10536117
    Abstract: Methods, circuits, and apparatuses that provide Buffer Amplifier, containing Amplifiers and Buffer Drivers, one or more of the following: ultra low power Buffer Amplifier, capable of having high gain, low noise, high speed, near rail-to-rail input-output voltage span, high sink-source current drive capability for an external load, and able to operate at low power supply voltages. Methods, circuits, and apparatuses that provide regulated cascode (RGC) current mirrors (CM) capable of operating at low power supply and having wide input-output voltage spans.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: January 14, 2020
    Inventor: Ali Tasdighi Far
  • Patent number: 10491167
    Abstract: Methods, circuits, and apparatuses are disclosed that provide a buffer amplifier with lower output noise by narrow banding the amplifier. To reinvigorate the speed of the narrow-banded amplifier, a boost-on signal is initiated. The boost-on signal dynamically and rapidly injects a substantial current into the amplifier's bias current network to speed up its slew rate, when the amplifier's inputs get unbalanced when being subjected to a large transient differential input signal. Subsequently, after the amplifier regulate itself and as the amplifier's inputs approach substantial balance, a boost-off signal dynamically injects a slow and decaying current (that converges to the level of static steady-state bias current) into amplifier's bias circuitry, instead of turning off the boost current rapidly, which improves the amplifier's settling time.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: November 26, 2019
    Inventor: Ali Tasdighi Far
  • Patent number: 10411597
    Abstract: A family of bandgap embodiments are disclosed herein, capable of operating with very low currents and low power supply voltages, using neither any custom devices nor any special manufacturing technology, and fabricated on mainstream standard digital CMOS processes. As such, manufacturing cost can be kept low, manufacturing yields of digital CMOS system-on-a-chip (SOC) that require a reference can be kept optimal, and manufacturing risk can be minimized due to its flexibility with respect to fabrication process node-portability. Although the embodiments disclosed herein use novel techniques to achieve accurate operations with low power and low voltage, this family of bandgaps also uses parasitic bipolar junction transistors (BJT) available in low cost digital CMOS process to generate proportional and complementary to absolute temperature (PTAT and CTAT) voltages via the base-emitter voltage (VEB) of BJTs and scaling VEB differential pairs to generate the BJTs thermal voltage (VT).
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 10, 2019
    Inventor: Ali Tasdighi Far
  • Patent number: 10198022
    Abstract: A bias current topology with embodiments in current source, current reference, (pseudo bandgap) voltage reference, and bandgap voltage reference that operate at ultra low currents and low power supply voltages which may use main stream standard digital Complementary Metal-Oxide-Semiconductor (CMOS) processes. The bias current topology uses chiefly a self cascode (SC), whose active resistor MOSFET is paced in series with the gate input of the MOSFETs that help generate the proportional to absolute temperature (PTAT) voltage that is applied to the active resistor MOSFET to produce a bias current.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: February 5, 2019
    Inventor: Ali Tasdighi Far
  • Patent number: 10177713
    Abstract: Methods, circuits, and apparatuses that provide Buffer Amplifier, containing Amplifiers and Buffer Drivers, one or more of the following: ultra low power Buffer Amplifier, capable of having high gain, low noise, high speed, near rail-to-rail input-output voltage span, high sink-source current drive capability for an external load, and able to operate at low power supply voltages. Methods, circuits, and apparatuses that provide regulated cascode (RGC) current mirrors (CM) capable of operating at low power supply and having wide input-output voltage spans.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: January 8, 2019
    Inventor: Ali Tasdighi Far
  • Patent number: 9921600
    Abstract: A bias current topology with embodiments in current source, current reference, (pseudo bandgap) voltage reference, and bandgap voltage reference that operate at ultra low currents and low power supply voltages which may use main stream standard digital Complementary Metal-Oxide-Semiconductor (CMOS) processes. The bias current topology uses chiefly a self cascode (SC), whose active resistor MOSFET is paced in series with the gate input of the MOSFETs that help generate the proportional to absolute temperature (PTAT) voltage that is applied to the active resistor MOSFET to produce a bias current.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 20, 2018
    Inventor: Ali Tasdighi Far
  • Patent number: 9780652
    Abstract: A family of bandgap embodiments are disclosed herein, capable of operating with very low currents and low power supply voltages, using neither any custom devices nor any special manufacturing technology, and fabricated on mainstream standard digital CMOS processes. As such, manufacturing cost can be kept low, manufacturing yields of digital CMOS system-on-a-chip (SOC) that require a reference can be kept optimal, and manufacturing risk can be minimized due to its flexibility with respect to fabrication process node-portability. Although the embodiments disclosed herein use novel techniques to achieve accurate operations with low power and low voltage, this family of bandgaps also uses parasitic bipolar junction transistors (BJT) available in low cost digital CMOS process to generate proportional and complementary to absolute temperature (PTAT and CTAT) voltages via the base-emitter voltage (VEB) of BJTs and scaling VEB differential pairs to generate the BJTs thermal voltage (VT).
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: October 3, 2017
    Inventor: Ali Tasdighi Far
  • Patent number: 9519304
    Abstract: A bias current topology with embodiments in current source, current reference, (pseudo bandgap) voltage reference, and bandgap voltage reference that operate at ultra low currents and low power supply voltages which may use main stream standard digital Complementary Metal-Oxide-Semiconductor (CMOS) processes. The bias current topology uses chiefly a self cascode (SC), whose active resistor MOSFET is paced in series with the gate input of the MOSFETs that help generate the proportional to absolute temperature (PTAT) voltage that is applied to the active resistor MOSFET to produce a bias current.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: December 13, 2016
    Inventor: Ali Tasdighi Far