Patents by Inventor Ali Zojaji

Ali Zojaji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9890455
    Abstract: Embodiments of the present invention generally relates to apparatus for use in film depositions. The apparatus generally include pre-heat rings adapted to be positioned in a processing chamber. In one embodiment, a pre-heat ring includes a ring having an inner edge and an outer edge. The outer edge has a constant radius. The inner edge is oblong-shaped and may have a first portion having a constant radius measured from a center of a circle defined by an outer circumference of the ring. A second portion may have a constant radius measured from a location other than the center of the outer circumference. In another embodiment, a processing chamber includes a pre-heat ring positioned around the periphery of a substrate support. The pre-heat ring includes an inner edge having a first portion, a second portion, and one or more linear portions positioned between the first portion and the second portion.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 13, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nyi O. Myo, John S. Webb, Masato Ishii, Xuebin Li, Zhiyuan Ye, Ali Zojaji
  • Patent number: 8586456
    Abstract: In a first aspect, a method of forming an epitaxial film on a substrate is provided. The method includes (a) providing a substrate; (b) exposing the substrate to a silicon source and a carbon source so as to form a carbon-containing silicon epitaxial film; (c) encapsulating the carbon-containing silicon epitaxial film with an encapsulating film; and (d) exposing the substrate to Cl2 so as to etch the encapsulating film. Numerous other aspects are provided.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Yihwan Kim, Xiaowei Li, Ali Zojaji, Nicholas C. Dalida, Jinsong Tang, Xiao Chen, Arkadii V. Samoilov
  • Patent number: 8445389
    Abstract: Embodiments of the invention generally relate to methods for treating a silicon-containing material on a substrate surface and performing a chamber clean process. In one embodiment, a method includes positioning a substrate containing a silicon material having a contaminant thereon within a process chamber and exposing the substrate to an etching gas containing chlorine gas and a silicon source gas while removing the contaminant and maintaining a temperature of the substrate within a range from about 500° C. to less than about 800° C. during an etching process. The method further includes exposing the substrate to a deposition gas after the etching process during a deposition process and exposing the process chamber to a chamber clean gas containing chlorine gas and the silicon source gas after the deposition process during a chamber clean process. The chamber clean process limits the etching of quartz and metal surfaces within the process chamber.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: May 21, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Ali Zojaji, Arkadii V. Samoilov
  • Publication number: 20120103263
    Abstract: Embodiments of the present invention generally relates to apparatus for use in film depositions. The apparatus generally include pre-heat rings adapted to be positioned in a processing chamber. In one embodiment, a pre-heat ring includes a ring having an inner edge and an outer edge. The outer edge has a constant radius. The inner edge is oblong-shaped and may have a first portion having a constant radius measured from a center of a circle defined by an outer circumference of the ring. A second portion may have a constant radius measured from a location other than the center of the outer circumference. In another embodiment, a processing chamber includes a pre-heat ring positioned around the periphery of a substrate support. The pre-heat ring includes an inner edge having a first portion, a second portion, and one or more linear portions positioned between the first portion and the second portion.
    Type: Application
    Filed: September 30, 2011
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: NYI O. MYO, John S. Webb, Masato Ishii, Xuebin Li, Zhiyuan Ye, Ali Zojaji
  • Publication number: 20120108039
    Abstract: Embodiments of the invention generally relate to methods for treating a silicon-containing material on a substrate surface and performing a chamber clean process. In one embodiment, a method includes positioning a substrate containing a silicon material having a contaminant thereon within a process chamber and exposing the substrate to an etching gas containing chlorine gas and a silicon source gas while removing the contaminant and maintaining a temperature of the substrate within a range from about 500° C. to less than about 800° C. during an etching process. The method further includes exposing the substrate to a deposition gas after the etching process during a deposition process and exposing the process chamber to a chamber clean gas containing chlorine gas and the silicon source gas after the deposition process during a chamber clean process. The chamber clean process limits the etching of quartz and metal surfaces within the process chamber.
    Type: Application
    Filed: January 9, 2012
    Publication date: May 3, 2012
    Inventors: Ali Zojaji, Arkadii V. Samoilov
  • Patent number: 8093154
    Abstract: In one embodiment of the invention, a method for finishing or treating a silicon-containing surface is provided which includes removing contaminants and/or smoothing the surface contained on the surface by a slow etch process (e.g., about <100 ?/min). The silicon-containing surface is exposed to an etching gas that contains an etchant and a silicon source. Preferably, the etchant is chlorine gas so that a relatively low temperature (e.g., <800° C.) is used during the process. In another embodiment, a method for etching a silicon-containing surface during a fast etch process (e.g., about >100 ?/min) is provided which includes removing silicon-containing material to form a recess in a source/drain (S/D) area on the substrate. In another embodiment, a method for cleaning a process chamber is provided which includes exposing the interior surfaces with a chamber clean gas that contains an etchant and a silicon source.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: January 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Ali Zojaji, Arkadii V. Samoilov
  • Patent number: 8029620
    Abstract: In a first aspect, a method is provided for forming an epitaxial layer stack on a substrate. The method includes (1) selecting a target carbon concentration for the epitaxial layer stack; (2) forming a carbon-containing silicon layer on the substrate, the carbon-containing silicon layer having at least one of an initial carbon concentration, a thickness and a deposition time selected based on the selected target carbon concentration; and (3) forming a non-carbon-containing silicon layer on the carbon-containing silicon layer prior to etching. Numerous other aspects are provided.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 4, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Zhiyuan Ye, Ali Zojaji
  • Publication number: 20110230036
    Abstract: In a first aspect, a method of forming an epitaxial film on a substrate is provided. The method includes (a) providing a substrate; (b) exposing the substrate to a silicon source and a carbon source so as to form a carbon-containing silicon epitaxial film; (c) encapsulating the carbon-containing silicon epitaxial film with an encapsulating film; and (d) exposing the substrate to Cl2 so as to etch the encapsulating film. Numerous other aspects are provided.
    Type: Application
    Filed: May 31, 2011
    Publication date: September 22, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Yihwan Kim, Xiaowei Li, Ali Zojaji, Nicholas C. Dalida, Jinsong Tang, Xiao Chen, Arkadii V. Samoilov
  • Patent number: 7960256
    Abstract: In a first aspect, a method of forming an epitaxial film on a substrate is provided. The method includes (a) providing a substrate; (b) exposing the substrate to a silicon source and a carbon source so as to form a carbon-containing silicon epitaxial film; (c) encapsulating the carbon-containing silicon epitaxial film with an encapsulating film; and (d) exposing the substrate to Cl2 so as to etch the encapsulating film. Numerous other aspects are provided.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: June 14, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Yihwan Kim, Xiaowei Li, Ali Zojaji, Nicholas C. Dalida, Jinsong Tang, Xiao Chen, Arkadii V. Samoilov
  • Publication number: 20100221902
    Abstract: In a first aspect, a method of forming an epitaxial film on a substrate is provided. The method includes (a) providing a substrate; (b) exposing the substrate to a silicon source and a carbon source so as to form a carbon-containing silicon epitaxial film; (c) encapsulating the carbon-containing silicon epitaxial film with an encapsulating film; and (d) exposing the substrate to Cl2 so as to etch the encapsulating film. Numerous other aspects are provided.
    Type: Application
    Filed: May 12, 2010
    Publication date: September 2, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Yihwan Kim, Xiaowei Li, Ali Zojaji, Nicholas C. Dalida, Jinsong Tang, Xiao Chen, Arkadii V. Samoilov
  • Patent number: 7732305
    Abstract: In a first aspect, a method of forming an epitaxial film on a substrate is provided. The method includes (a) providing a substrate; (b) exposing the substrate to a silicon source and a carbon source so as to form a carbon-containing silicon epitaxial film; (c) encapsulating the carbon-containing silicon epitaxial film with an encapsulating film; and (d) exposing the substrate to Cl2 so as to etch the encapsulating film. Numerous other aspects are provided.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Yihwan Kim, Xiaowei Li, Ali Zojaji, Nicholas C. Dalida, Jinsong Tang, Xiao Chen, Arkadii V. Samoilov
  • Patent number: 7732269
    Abstract: A method for forming an ultra shallow junction on a substrate is provided. In certain embodiments a method of forming an ultra shallow junction on a substrate is provided. The substrate is placed into a process chamber. A silicon carbon layer is deposited on the substrate. The silicon carbon layer is exposed to a dopant. The substrate is heated to a temperature greater than 950° C. so as to cause substantial annealing of the dopant within the silicon carbon layer. In certain embodiments the substrate is heated to a temperature between about 1000° C. and about 1100°. In certain embodiments the substrate is heated to a temperature between about 1030° C. and 1050° C. In certain embodiments, a structure having an abrupt p-n junction is provided.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: June 8, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Majeed A. Foad, Yonah Cho, Zhiyuan Ye, Ali Zojaji, Errol Sanchez
  • Patent number: 7682940
    Abstract: In a first aspect, a first method of forming an epitaxial film on a substrate is provided. The first method includes (a) providing a substrate; (b) exposing the substrate to at least a silicon source so as to form an epitaxial film on at least a portion of the substrate; and (c) exposing the substrate to HCl and Cl2 so as to etch the epitaxial film and any other films formed during step (b). Numerous other aspects are provided.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: March 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Yihwan Kim, Xiaowei Li, Ali Zojaji, Nicholas C. Dalida, Jinsong Tang, Xiao Chen, Arkadii V. Samoilov
  • Patent number: 7674337
    Abstract: The present invention provides methods, systems, and apparatus for epitaxial film formation that includes an epitaxial chamber adapted to form an epitaxial layer on a substrate; a deposition gas manifold adapted to supply at least one deposition gas and a carrier gas to the epitaxial chamber; and an etchant gas manifold, separate from the deposition gas manifold, and adapted to supply at least one etchant gas and a carrier gas to the epitaxial chamber. Numerous other aspects are disclosed.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: David Ishikawa, Craig R. Metzner, Ali Zojaji, Yihwan Kim, Arkadii V. Samoilov
  • Patent number: 7651948
    Abstract: A method for processing a substrate including a pre-cleaning etch and reduced pressure process is disclosed. The pre-cleaning process involves introducing a substrate into a processing chamber; flowing an etching gas into the processing chamber; processing at least a portion of the substrate with the etching gas to remove a contaminated or damaged layer from a substrate surface; stopping flow of the etching gas; evacuating the processing chamber to achieve a reduced pressure in the chamber; and processing the substrate surface at the reduced pressure. Epitaxial deposition is then used to form an epitaxial layer on the substrate surface.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: January 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Jean R. Vatus, Lori D. Washington, Arkadii Samoilov, Ali Zojaji
  • Patent number: 7598178
    Abstract: The present invention provides systems and methods of forming an epitaxial film on a substrate. After heating in a process chamber, the substrate is exposed to a silicon source and at least one of SiH2(CH3)2, SiH(CH3)3, Si(CH3)4, 1,3-disilabutane, and C2H2, at a temperature of greater than about 250 degrees Celsius and a pressure greater than about 1 Torr so as to form an epitaxial film on at least a portion of the substrate. Then, the substrate is exposed to an etchant so as to etch the epitaxial film and any other films formed during the deposition. The deposition and etching may be repeated until a film of a desired thickness is achieved. Numerous other aspects are disclosed.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: October 6, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Arkadii V. Samoilov, Rohini Kodali, Ali Zojaji, Yihwan Kim
  • Publication number: 20080245767
    Abstract: A method for processing a substrate including a pre-cleaning etch and reduced pressure process is disclosed. The pre-cleaning process involves introducing a substrate into a processing chamber; flowing an etching gas into the processing chamber; processing at least a portion of the substrate with the etching gas to remove a contaminated or damaged layer from a substrate surface; stopping flow of the etching gas; evacuating the processing chamber to achieve a reduced pressure in the chamber; and processing the substrate surface at the reduced pressure. Epitaxial deposition is then used to form an epitaxial layer on the substrate surface.
    Type: Application
    Filed: June 30, 2006
    Publication date: October 9, 2008
    Inventors: Yihwan Kim, Jean R. Vatus, Lori D. Washington, Arkadii Samoilov, Ali Zojaji
  • Publication number: 20080044932
    Abstract: The present invention provides systems and methods of forming an epitaxial film on a substrate. After heating in a process chamber, the substrate is exposed to a silicon source and at least one of SiH2(CH3)2, SiH(CH3)3, Si(CH3)4, 1,3-disilabutane, and C2H2, at a temperature of greater than about 250 degrees Celsius and a pressure greater than about 1 Torr so as to form an epitaxial film on at least a portion of the substrate. Then, the substrate is exposed to an etchant so as to etch the epitaxial film and any other films formed during the deposition. The deposition and etching may be repeated until a film of a desired thickness is achieved. Numerous other aspects are disclosed.
    Type: Application
    Filed: March 23, 2007
    Publication date: February 21, 2008
    Inventors: ARKADII SAMOILOV, Rohini Kodali, Ali Zojaji, Yihwan Kim
  • Publication number: 20080022924
    Abstract: In a first aspect, a method is provided for forming an epitaxial layer stack on a substrate. The method includes (1) selecting a target carbon concentration for the epitaxial layer stack; (2) forming a carbon-containing silicon layer on the substrate, the carbon-containing silicon layer having at least one of an initial carbon concentration, a thickness and a deposition time selected based on the selected target carbon concentration; and (3) forming a non-carbon-containing silicon layer on the carbon-containing silicon layer prior to etching. Numerous other aspects are provided.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 31, 2008
    Inventors: Yihwan Kim, Zhiyuan Ye, Ali Zojaji
  • Publication number: 20070259112
    Abstract: The present invention provides methods, systems, and apparatus for epitaxial film formation that includes an epitaxial chamber adapted to form an epitaxial layer on a substrate; a deposition gas manifold adapted to supply at least one deposition gas and a carrier gas to the epitaxial chamber; and an etchant gas manifold, separate from the deposition gas manifold, and adapted to supply at least one etchant gas and a carrier gas to the epitaxial chamber. Numerous other aspects are disclosed.
    Type: Application
    Filed: April 6, 2007
    Publication date: November 8, 2007
    Inventors: David Ishikawa, Craig Metzner, Ali Zojaji, Yihwan Kim, Arkadii Samoilov