Patents by Inventor Aliaksandr ARTSIOMENKA

Aliaksandr ARTSIOMENKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136017
    Abstract: Methods, systems, and compositions for non-invasively detecting and/or monitoring therapeutic nucleic acid constructs in a sample comprising cell-free nucleic acids from a subject. Detection of therapeutic nucleic acid constructs in samples comprising cell-free nucleic acids allows for verifying therapeutic nucleic acid construct administration, determining the persistence or biological efficacy of the therapeutic nucleic acid construct, and/or ascertaining the efficacy of the therapy in the subject.
    Type: Application
    Filed: April 26, 2023
    Publication date: April 25, 2024
    Inventors: Justin I. ODEGAARD, Marcin SIKORA, Aliaksandr ARTSIOMENKA
  • Publication number: 20230416843
    Abstract: Provided herein are methods for determining the microsatellite instability status of samples. In one aspect, the methods include quantifying a number of different repeat lengths present at each of a plurality of microsatellite loci from sequence information to generate a site score for each of the plurality of the microsatellite loci. The methods also include comparing the site score of a given microsatellite locus to a site specific trained threshold for the given microsatellite locus for each of the plurality of the microsatellite loci and calling the given microsatellite locus as being unstable when the site score of the given microsatellite locus exceeds the site specific trained threshold for the given microsatellite locus to generate a microsatellite instability score, which includes a number of unstable microsatellite loci from the plurality of the microsatellite loci.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 28, 2023
    Inventors: Aliaksandr ARTSIOMENKA, Marcin SIKORA, Catalin BARBACIORU, Darya CHUDOVA, Martina I. LEFTEROVA
  • Patent number: 11773451
    Abstract: Provided herein are methods for determining the microsatellite instability status of samples. In one aspect, the methods include quantifying a number of different repeat lengths present at each of a plurality of microsatellite loci from sequence information to generate a site score for each of the plurality of the microsatellite loci. The methods also include comparing the site score of a given microsatellite locus to a site specific trained threshold for the given microsatellite locus for each of the plurality of the microsatellite loci and calling the given microsatellite locus as being unstable when the site score of the given microsatellite locus exceeds the site specific trained threshold for the given microsatellite locus to generate a microsatellite instability score, which includes a number of unstable microsatellite loci from the plurality of the microsatellite loci.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: October 3, 2023
    Assignee: Guardant Health, Inc.
    Inventors: Aliaksandr Artsiomenka, Marcin Sikora, Catalin Barbacioru, Darya Chudova, Martina I. Lefterova
  • Publication number: 20220344004
    Abstract: In implementations described herein, information derived from a sample that is derived from off-target sequences can be used to determine estimates for the copy number of tumor cells and/or the tumor fraction of a sample. Additionally, information derived from the presence of germline SNPs can be used to determine estimates for at least one of the copy number of tumor cells or the tumor fraction of a sample.
    Type: Application
    Filed: March 9, 2022
    Publication date: October 27, 2022
    Inventors: Catalin BARBACIORU, Darya CHUDOVA, Aliaksandr ARTSIOMENKA, Daniel GAILE, Hao WANG
  • Publication number: 20210398610
    Abstract: Provided herein are methods of making negative predictions. In some aspects, methods of determining that a first target nucleic acid variant is absent at a first genetic locus in a cell-free nucleic acid (cfNA) sample obtained from a subject having a given cancer type at least partially using a computer are provided. Certain of these methods include determining that the first target nucleic acid variant is not detected in the cfNA sample obtained from the subject, generating, by the computer, at least one tumor fraction based value; generating, by the computer, at least one mutual exclusivity value; and determining that the first target nucleic acid variant is absent at the first genetic locus in the cfNA sample using the tumor fraction based value and/or the mutual exclusivity value. Additional methods and related systems and computer readable media are also provided.
    Type: Application
    Filed: January 29, 2021
    Publication date: December 23, 2021
    Inventors: Aliaksandr ARTSIOMENKA, Aaron Isaac HARDIN, Stephen FAIRCLOUGH, Marcin SIKORA, Catalin BARBACIORU
  • Publication number: 20210363586
    Abstract: Provided herein are methods for determining the microsatellite instability status of samples. In one aspect, the methods include quantifying a number of different repeat lengths present at each of a plurality of microsatellite loci from sequence information to generate a site score for each of the plurality of the microsatellite loci. The methods also include comparing the site score of a given microsatellite locus to a site specific trained threshold for the given microsatellite locus for each of the plurality of the microsatellite loci and calling the given microsatellite locus as being unstable when the site score of the given microsatellite locus exceeds the site specific trained threshold for the given microsatellite locus to generate a microsatellite instability score, which includes a number of unstable microsatellite loci from the plurality of the microsatellite loci.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 25, 2021
    Inventors: Aliaksandr ARTSIOMENKA, Marcin SIKORA, Catalin BARBACIORU, Darya CHUDOVA, Martina I. LEFTEROVA
  • Publication number: 20190287648
    Abstract: Methods, systems, and compositions for non-invasively detecting and/or monitoring therapeutic nucleic acid constructs in a sample comprising cell-free nucleic acids from a subject. Detection of therapeutic nucleic acid constructs in samples comprising cell-free nucleic acids allows for verifying therapeutic nucleic acid construct administration, determining the persistence or biological efficacy of the therapeutic nucleic acid construct, and/or ascertaining the efficacy of the therapy in the subject.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Justin I. ODEGAARD, Marcin SIKORA, Aliaksandr ARTSIOMENKA