Patents by Inventor Aliaksandr Zaretski

Aliaksandr Zaretski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879848
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: January 23, 2024
    Assignee: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Publication number: 20230296558
    Abstract: A biosensor device for detecting an analyte in a sample, and methods of fabrication and use thereof. The biosensor device includes a vertical stack including a patterned biosensor layer; a hydrogel layer disposed above and in contact with the patterned biosensor layer; a permeable metallic electrode disposed above the hydrogel layer; and a sample collection layer disposed proximate and in contact with the permeable metallic electrode.
    Type: Application
    Filed: July 14, 2021
    Publication date: September 21, 2023
    Inventor: Aliaksandr Zaretski
  • Publication number: 20220091042
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Application
    Filed: December 3, 2021
    Publication date: March 24, 2022
    Applicant: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Patent number: 11193890
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: December 7, 2021
    Assignee: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Publication number: 20200333254
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Application
    Filed: May 4, 2020
    Publication date: October 22, 2020
    Applicant: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Patent number: 10641710
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: May 5, 2020
    Assignee: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Publication number: 20180100802
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 12, 2018
    Applicant: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Patent number: 9863885
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: January 9, 2018
    Assignee: The Regents of the University of Californa
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Patent number: 9840024
    Abstract: Provided herein are processes for transferring high quality large-area graphene layers (e.g., single-layer graphene) to a flexible substrate based on preferential adhesion of certain thin metallic films to graphene followed by lamination of the metallized graphene layers to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing, providing an environmentally benign and scalable process of transferring graphene to flexible substrates.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: December 12, 2017
    Assignee: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi
  • Publication number: 20170102334
    Abstract: A method for fabricating a composite film structure, the method includes determining a desired morphology for a metallic layer of the composite film structure, selecting a first metal substrate based on the determining, transferring a graphene layer onto the first metal substrate, depositing the metallic layer on the graphene layer to achieve the desired morphology, and removing the first metal substrate from the graphene and the deposited metallic layer to form the composite film structure. A surface energy difference between the first metal substrate and the deposited metallic layer results in the desired morphology of the metallic layer.
    Type: Application
    Filed: October 7, 2016
    Publication date: April 13, 2017
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi, Alex Savtchenko, Elena Molokanova, Mark Mercola
  • Publication number: 20160318207
    Abstract: Provided herein are processes for transferring high quality large-area graphene layers (e.g., single-layer graphene) to a flexible substrate based on preferential adhesion of certain thin metallic films to graphene followed by lamination of the metallized graphene layers to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing, providing an environmentally benign and scalable process of transferring graphene to flexible substrates.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 3, 2016
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi
  • Patent number: 9418839
    Abstract: Provided herein are processes for transferring high quality large-area graphene layers (e.g., single-layer graphene) to a flexible substrate based on preferential adhesion of certain thin metallic films to graphene followed by lamination of the metallized graphene layers to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing, providing an environmentally benign and scalable process of transferring graphene to flexible substrates.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 16, 2016
    Assignee: The Regents of the University of California
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi
  • Publication number: 20150371848
    Abstract: Provided herein are processes for transferring high quality large-area graphene layers (e.g., single-layer graphene) to a flexible substrate based on preferential adhesion of certain thin metallic films to graphene followed by lamination of the metallized graphene layers to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing, providing an environmentally benign and scalable process of transferring graphene to flexible substrates.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 24, 2015
    Inventors: Aliaksandr Zaretski, Darren J. Lipomi