Patents by Inventor Alice Asteian

Alice Asteian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9051265
    Abstract: The invention provides molecular entities that bind with high affinity to PPARG (PPAR?), and inhibit kinase-mediated (e.g., cdk5-mediated) phosphorylation of PPARG, but do not exert an agonistic effect on PPARG. Compounds of the invention can be used for treatment of conditions in patients wherein PPARG plays a role, such as diabetes, insulin resistance, impaired glucose tolerance, pre-diabetes, hyperglycemia, hyperinsulinemia, obesity, or inflammation. Side effects such as significant weight gain, edema, impairment of bone growth or formation, or cardiac hypertrophy, or any combination thereof, can be avoided in the mammal receiving the compound. Methods of preparation of the compounds, bioassay methods for evaluating compounds of the invention as non-agonistic PPARG binding compounds, and pharmaceutical compositions are also provided.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: June 9, 2015
    Assignee: The Scripps Research Institute
    Inventors: Theodore Mark Kamenecka, Patrick R. Griffin, Marcel Koenig, Alice Asteian, Anne-Laure Blayo, Yuanjun He, Youseung Shin
  • Patent number: 8957093
    Abstract: The invention provides molecular entities that bind with high affinity to PPARG (PPAR?), inhibit kinase-mediated, e.g., cdk5-mediated, phosphorylation of PPARG, but do not exert an agonistic effect on PPARG. Compounds of the invention can be used for treatment of conditions in patients wherein PPARG plays a role, such as diabetes, insulin resistance, impaired glucose tolerance, pre-diabetes, hyperglycemia, hyperinsulinemia, obesity, or inflammation. In methods of treatment of these conditions using a compound of the invention, the compound can avoid producing side effects of significant weight gain, edema, impairment of bone growth or formation, or cardiac hypertrophy, or any combination thereof, in the patient receiving the compound. Methods of preparation of the compounds, bioassay methods for evaluating compounds of the invention as non-agonistic PPARG binding compounds, and pharmaceutical compositions are also provided.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: February 17, 2015
    Assignee: The Scripps Research Institute
    Inventors: Theodore Mark Kamenecka, Patrick R. Griffin, Marcel Koenig, Alice Asteian, Anne-Laure Blayo, Yuanjun He, Youseung Shin
  • Publication number: 20120309769
    Abstract: The invention provides molecular entities that bind with high affinity to PPARG (PPAR?), and inhibit kinase-mediated (e.g., cdk5-mediated) phosphorylation of PPARG, but do not exert an agonistic effect on PPARG. Compounds of the invention can be used for treatment of conditions in patients wherein PPARG plays a role, such as diabetes, insulin resistance, impaired glucose tolerance, pre-diabetes, hyperglycemia, hyperinsulinemia, obesity, or inflammation. Side effects such as significant weight gain, edema, impairment of bone growth or formation, or cardiac hypertrophy, or any combination thereof, can be avoided in the mammal receiving the compound. Methods of preparation of the compounds, bioassay methods for evaluating compounds of the invention as non-agonistic PPARG binding compounds, and pharmaceutical compositions are also provided.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 6, 2012
    Applicant: SCRIPPS RESEARCH INSTITUTE, THE
    Inventors: Theodore Mark Kamenecka, Patrick R. Griffin, Marcel Koenig, Alice Asteian, Anne-Laure Blayo, Yuanjun He, Youseung Shin
  • Publication number: 20120309757
    Abstract: The invention provides molecular entities that bind with high affinity to PPARG (PPAR?), inhibit kinase-mediated, e.g., cdk5-mediated, phosphorylation of PPARG, but do not exert an agonistic effect on PPARG. Compounds of the invention can be used for treatment of conditions in patients wherein PPARG plays a role, such as diabetes, insulin resistance, impaired glucose tolerance, pre-diabetes, hyperglycemia, hyperinsulinemia, obesity, or inflammation. In methods of treatment of these conditions using a compound of the invention, the compound can avoid producing side effects of significant weight gain, edema, impairment of bone growth or formation, or cardiac hypertrophy, or any combination thereof, in the patient receiving the compound. Methods of preparation of the compounds, bioassay methods for evaluating compounds of the invention as non-agonistic PPARG binding compounds, and pharmaceutical compositions are also provided.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 6, 2012
    Applicant: SCRIPPS RESEARCH INSTITUTE, THE
    Inventors: Theodore Mark Kamenecka, Patrick R. Griffin, Marcel Koenig, Alice Asteian, Anne-Laure Blayo, Yuanjun He, Youseung Shin