Patents by Inventor Alice Kaye

Alice Kaye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10600217
    Abstract: This disclosure provides a computational framework with related methods and systems to enhance the analysis of genomic information. More specifically, the disclosure provides for a graph-based reference genome framework, referred to as a GNOmics Graph Model (GGM), which represents genomic sequence information in edges with nodes representing transitions between edges. The disclosed GGM framework can represent all known polymorphisms simultaneously, including, SNPs, indels, and various rearrangements, in a data-efficient manner. The edges can contain weights to reflect the likelihood of a path within the GGM incorporating any particular edge. The disclosure also provides for systems and methods for using the GGM as a reference model for the rapid assembly of short sequence reads and analysis of DNA sequence variation with enhanced computational efficiency.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 24, 2020
    Assignee: The University of British Columbia
    Inventor: Alice Kaye
  • Publication number: 20190164320
    Abstract: This disclosure provides a computational framework with related methods and systems to enhance the analysis of genomic information. More specifically, the disclosure provides for a graph-based reference genome framework, referred to as a GNOmics Graph Model (GGM), which represents genomic sequence information in edges with nodes representing transitions between edges. The disclosed GGM framework can represent all known polymorphisms simultaneously, including, SNPs, indels, and various rearrangements, in a data-efficient manner. The edges can contain weights to reflect the likelihood of a path within the GGM incorporating any particular edge. The disclosure also provides for systems and methods for using the GGM as a reference model for the rapid assembly of short sequence reads and analysis of DNA sequence variation with enhanced computational efficiency.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 30, 2019
    Applicant: The University of British Columbia
    Inventor: Alice Kaye
  • Patent number: 10229519
    Abstract: This disclosure provides a computational framework with related methods and systems to enhance the analysis of genomic information. More specifically, the disclosure provides for a graph-based reference genome framework, referred to as a GNOmics Graph Model (GGM), which represents genomic sequence information in edges with nodes representing transitions between edges. The disclosed GGM framework can represent all known polymorphisms simultaneously, including, SNPs, indels, and various rearrangements, in a data-efficient manner. The edges can contain weights to reflect the likelihood of a path within the GGM incorporating any particular edge. The disclosure also provides for systems and methods for using the GGM as a reference model for the rapid assembly of short sequence reads and analysis of DNA sequence variation with enhanced computational efficiency.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 12, 2019
    Assignee: The University of British Columbia
    Inventor: Alice Kaye
  • Publication number: 20160342737
    Abstract: This disclosure provides a computational framework with related methods and systems to enhance the analysis of genomic information. More specifically, the disclosure provides for a graph-based reference genome framework, referred to as a GNOmics Graph Model (GGM), which represents genomic sequence information in edges with nodes representing transitions between edges. The disclosed GGM framework can represent all known polymorphisms simultaneously, including, SNPs, indels, and various rearrangements, in a data-efficient manner. The edges can contain weights to reflect the likelihood of a path within the GGM incorporating any particular edge. The disclosure also provides for systems and methods for using the GGM as a reference model for the rapid assembly of short sequence reads and analysis of DNA sequence variation with enhanced computational efficiency.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Applicant: The University of British Columbia
    Inventor: Alice Kaye