Patents by Inventor Alicia Jerram Hunter Evans

Alicia Jerram Hunter Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11464928
    Abstract: A method of estimating a parameter indicative of respiratory flow of a patient being administered flow therapy, comprising: optionally administering a gas at a flow rate to the patient using a flow therapy apparatus with a patient interface, determining a terminal pressure in, at or proximate the outlet of the patient interface or in, at or proximate the nares of the patient, determining nasal RTF, determining a nasal flow parameter being or indicative of nasal flow based on the pressure and a nasal RTF, and optionally outputting the nasal flow parameter or parameter derived therefrom.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: October 11, 2022
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Craig Karl White, Alicia Jerram Hunter Evans, Samantha Dale Oldfield, Callum James Thomas Spence, Salman Mansoor Javed
  • Patent number: 11446462
    Abstract: An apparatus or kit for a respiratory support system for delivering humidified gas to a user or patient. The apparatus comprising a humidifier chamber in pneumatic communication with a gases source, an inspiratory conduit in pneumatic communication with the humidifier chamber downstream of the humidifier chamber, a filter that is in pneumatic communication with the inspiratory conduit downstream of the inspiratory conduit, and a patient interface for delivering humidified gas to a user or patient, wherein the patient interface is in pneumatic communication with the filter downstream of the filter, or is configured to be placed in pneumatic communication with the filter downstream of the filter.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: September 20, 2022
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Bruce Gordon Holyoake, Samantha Dale Oldfield, Alicia Jerram Hunter Evans, Callum James Thomas Spence, Craig Karl White, Dexter Chi Lun Cheung, Matthew Jon Payton, Michael Robert Barraclough, Daniel John Smith, Kevin Blake Powell
  • Patent number: 11433198
    Abstract: A method of estimating respiratory demand of a patient being administered flow therapy can include: administering a gas flow rate to the patient through both nostrils using a flow therapy apparatus with a patient interface for each nostril, measuring a parameter associated with that nostril, the parameter being one or more of: respiratory demand of that nostril, indicative of respiratory demand of that nostril, or a parameter from which respiratory demand of that nostril can be derived, determining respiratory demand (or parameter indicative of respiratory demand) for the patient from the nostril parameter for each nostril.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: September 6, 2022
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Craig Karl White, Alicia Jerram Hunter Evans, Callum James Thomas Spence
  • Patent number: 11420002
    Abstract: The disclosure relates to a nasal cannula comprising a port configured for delivery of a medicament into a flow of a fluid being delivered by the nasal cannula to a user and/or configured for interfacing with a medicament delivery device or an instrument. The disclosure also relates to a nasal cannula comprising an asymmetric profile to reduce an amount of occlusion of one nare of a user to provide access for an instrument to the nare with the nasal cannula in use.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 23, 2022
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Alicia Jerram Hunter Evans, Craig Karl White, Samantha Dale Oldfield, Milanjot Singh Assi, Erik Robertus Scheirlinck, Callum James Thomas Spence, Laurence Gulliver, Dexter Chi Lun Cheung, Michael Robert Barraclough, Matthew Jon Payton
  • Patent number: 11419997
    Abstract: Several methods of supporting respiratory function of a patient before, during and/or after a medical procedure are disclosed. In certain arrangements, supporting respiratory function while a patient is under general anaesthesia can include providing a high gas flow that is greater than 15 L/min while the patient is under general anaesthesia. In certain arrangements, a method of providing ventilation while a patient is under general anaesthesia involves providing only a gas flow delivered through a nasal interface that is greater than 15 L/min while the patient is under general anaesthesia.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 23, 2022
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Craig Karl White, Alicia Jerram Hunter Evans, Matthew Jon Payton, Geraldine Frances Keogh, Nicholas Simon David Connolly, Anil Patel, Seyed Ahmad Reza Nouraei
  • Patent number: 11324908
    Abstract: A conduit with a collapsible portion, and a nasal interface for providing a flow of gases to a user, is described. The interface comprises a manifold and at least one nasal prong or an outlet extending from the manifold to be received by a user's nare. A side member extends from each side of the manifold, each side member comprising a collapsible portion comprising a lumen. In an open configuration the lumen remains open and in a closed configuration the collapsible portion is pinched or flattened to occlude or substantially occlude the lumen. At least one of the side members is a conduit for a flow of gases from an inlet of the patient interface to the manifold.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: May 10, 2022
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Bruce Gordon Holyoake, German Klink, Alicia Jerram Hunter Evans, Craig Karl White
  • Patent number: 11298494
    Abstract: A user interface convertible between a nasal configuration and an oral configuration. The user interface has a nasal cannula and a mouthpiece. The nasal cannula has a body portion and at least one prong extending from the body portion, the prong being adapted to direct a flow of gas into a nare of a user's nose. The mouthpiece is adapted to engage the mouth of the patient and direct a flow of gas into a user's mouth. In the nasal configuration the prong of the nasal cannula is adapted to direct a flow of gases into a nare of the patient. In the oral configuration, the nasal cannula is engaged with the mouthpiece such that a gases flow is provided to at least the mouth of the user.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: April 12, 2022
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Michael Robert Barraclough, Matthew Jon Payton, Callum James Thomas Spence, Laurence Gulliver, Samantha Dale Oldfield, Dexter Chi Lun Cheung, Geraldine Frances Keogh, Milanjot Singh Assi, Alicia Jerram Hunter Evans, Craig Karl White
  • Publication number: 20210138172
    Abstract: A method of determining a duration of safe apnoea. Information is obtained relating to a respiratory indicator, and a duration of safe apnoea is determined from the obtained information. A respiratory therapy system has one or more patient interfaces. A processor is configured to determine a duration of safe apnoea based on obtained information relating to a respiratory indicator.
    Type: Application
    Filed: April 5, 2018
    Publication date: May 13, 2021
    Inventors: Alicia Jerram Hunter EVANS, Samantha Dale OLDFIELD, Michael Robert BARRACLOUGH, Dexter Chi Lun CHEUNG, Callum James Thomas SPENCE, Milanjot Singh ASSI, Hamish Adrian OSBORNE, Thomas Heinrich BARNES, Matthew Jon PAYTON, Craig Karl WHITE
  • Publication number: 20210016031
    Abstract: An infant positive airway pressure (PAP) or continuous positive airway pressure (CPAP) device and related patient interface and system, which can provide a flow of breathing gas to the patient interface. The device can be incorporated into the patient interface and includes at least one interior passage in the shape of a nozzle having a throat, a first portion upstream of the throat and a second portion downstream of the throat relative to the flow of breathing gas. The passage has a vent opening within the second portion and the interior passage defines a continuously curved surface extending between the throat and the vent opening. The second portion of the nozzle preferably is divergent and the first portion can be convergent or non-convergent (e.g., constant cross-section).
    Type: Application
    Filed: June 2, 2020
    Publication date: January 21, 2021
    Inventors: Callum James Thomas Spence, Rachael Porter, Craig Karl White, Alicia Jerram Hunter Evans
  • Publication number: 20200390992
    Abstract: A respiratory assistance system can provide high flow therapy to patients. The respiratory assistance system can include a patient interface that can deliver a gas flow to a patient and a gas source that can drive the gas flow towards the patient interface at an operating flow rate. The system can include a controller for controlling the operating flow rate of the gas. The controller can apply multiple test flow rate values in a range as the operating flow rate. For each of the test flow rate values, the controller can measure a patient parameter. The controller can determine a new flow rate value based on the measured patient parameters. Patient parameters can include respiration rate, work of breathing, or any other parameters related to the respiratory circuit.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 17, 2020
    Inventors: Matthew Jon Payton, Callum James Thomas Spence, Alicia Jerram Hunter Evans, Andreas Schibler, Craig Karl White, Samantha Dale Oldfield
  • Publication number: 20200383606
    Abstract: The present disclosure relates to determining a corrected exhaled gas measurement during high flow respiratory therapy. Measuring exhaled gas concentration during high flow respiratory therapy is difficult and inaccurate due to a phenomenon known as flushing. The high flows delivered to the patient flush the dead space in the conducting airways, which causes a dilution effect that results in underestimated or overestimated exhaled gas measurement depending on the gas composition delivered by the high flow system. This can lead to incorrect clinical measurements and diagnoses. Various algorithms are disclosed herein to account for the dilution effect caused by flushing, allowing for the method of measuring gas concentrations to still be used accurately for clinical measurements.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 10, 2020
    Inventors: Alicia Jerram Hunter Evans, Callum James Thomas Spence, Craig Karl White, Geraldine Keogh, Matthew Jon Payton, Laurence Gulliver, Milanjot Singh Assi, Samantha Dale Oldfield, Laith Adeeb Hermez
  • Publication number: 20200368471
    Abstract: The invention relates to a respiratory system comprising a first patient interface for delivery of a first flow of gases to a patient, a second patient interface for delivery of a second flow of gases to the patient, and a device and/or sensing arrangement that is configure to facilitate a switching of the system between a first respiratory mode where the device allowing delivery of the first flow of gases to an outlet of the first patient interface when the second patient interface is absent from the patient, and a second respiratory mode where the device reducing or stopping delivery of the first flow of gases to the outlet of the first patient interface when the second patient interface is located together with the first patient interface upon the patient.
    Type: Application
    Filed: June 10, 2020
    Publication date: November 26, 2020
    Inventors: Bruce Gordon Holyoake, Dexter Chi Lun Cheung, Anil Patel, Seyed Ahmad Reza Nouraei, Milanjot Singh Assi, Thomas Heinrich Barnes, Alicia Jerram Hunter Evans, Craig Karl White, Matthew John Payton, Laith Adeeb Hermez, German Klink, Samantha Dale Oldfield, Taylor James Edwards, Aidan Robert Burgess
  • Publication number: 20200368479
    Abstract: This invention relates to a patient interface comprising at least one nasal prong or an outlet of said patient interface to be received by a user's nare(s) or mouth; a gases delivery side member extending from a side of the at least one nasal prong or said outlet; and wherein the gases delivery side member comprises of a lumen for a flow of gases from an inlet of the patient interface to the at least one nasal prong or said outlet; a collapsible portion; at least one elbow portion or flexible portion, located substantially at or toward one or both of a downstream end of said gases delivery member or an upstream end of said gases delivery member.
    Type: Application
    Filed: February 13, 2019
    Publication date: November 26, 2020
    Inventors: Cormac Nicholas FLYNN, Bruce Gordon HOLYOAKE, Alicia Jerram Hunter EVANS, German KLINK, Craig Karl WHITE, Matthew Jon PAYTON, Aidan Robert BURGESS, Hamish Adrian OSBORNE, Nathan James ROA, Graeme Matthew SMITH
  • Publication number: 20200360637
    Abstract: This invention relates to a respiratory therapy system comprising a first patient interface for delivery of a flow of gas to a patient, and a second patient interface for delivery of a flow of gas to the patient, or devices or interfaces for use in such systems.
    Type: Application
    Filed: June 10, 2020
    Publication date: November 19, 2020
    Inventors: Bruce Gordon Holyoake, Dexter Chi Lun Cheung, Anil Patel, Seyed Ahmad Reza Nouraei, Milanjot Singh Assi, Thomas Heinrich Barnes, Alicia Jerram Hunter Evans, Craig Karl White, Matthew John Payton, Laith Adeeb Hermez, German Klink, Samantha Dale Oldfield, Taylor James Edwards, Aidan Robert Burgess
  • Publication number: 20200261671
    Abstract: A respiratory therapy system configured to deliver gases to a patient can have a non-sealed gas flow generating arrangement configured to deliver a high flow of positive gas to an airway of a patient and a negative flow of gas away from an airway of the patient. The positive and negative flows of gas can be generated simultaneously. The flow of positive and negative gases reduces exhaled gases in anatomical dead spaces of the patient.
    Type: Application
    Filed: February 27, 2020
    Publication date: August 20, 2020
    Inventors: Callum James Thomas Spence, John Whitney Storey, Jonathan David Harwood, Quinton Michael Smith, Alicia Jerram Hunter Evans
  • Patent number: 10722670
    Abstract: A respiratory assistance system can provide high flow therapy to patients. The respiratory assistance system can include a patient interface that can deliver a gas flow to a patient and a gas source that can drive the gas flow towards the patient interface at an operating flow rate. The system can include a controller for controlling the operating flow rate of the gas. The controller can apply multiple test flow rate values in a range as the operating flow rate. For each of the test flow rate values, the controller can measure a patient parameter. The controller can determine a new flow rate value based on the measured patient parameters. Patient parameters can include respiration rate, work of breathing, or any other parameters related to the respiratory circuit.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: July 28, 2020
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Matthew Jon Payton, Callum James Thomas Spence, Alicia Jerram Hunter Evans, Andreas Schibler, Craig Karl White, Samantha Dale Oldfield
  • Patent number: 10722143
    Abstract: The present disclosure relates to determining a corrected exhaled gas measurement during high flow respiratory therapy. Measuring exhaled gas concentration during high flow respiratory therapy is difficult and inaccurate due to a phenomenon known as flushing. The high flows delivered to the patient flush the dead space in the conducting airways, which causes a dilution effect that results in underestimated or overestimated exhaled gas measurement depending on the gas composition delivered by the high flow system. This can lead to incorrect clinical measurements and diagnoses. Various algorithms are disclosed herein to account for the dilution effect caused by flushing, allowing for the method of measuring gas concentrations to still be used accurately for clinical measurements.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: July 28, 2020
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Alicia Jerram Hunter Evans, Callum James Thomas Spence, Craig Karl White, Geraldine Keogh, Matthew Jon Payton, Laurence Gulliver, Milanjot Singh Assi, Samantha Dale Oldfield, Laith Adeeb Hermez
  • Patent number: 10716912
    Abstract: The invention relates to a respiratory system comprising a first patient interface for delivery of a first flow of gases to a patient, a second patient interface for delivery of a second flow of gases to the patient, and a device and/or sensing arrangement that is configure to facilitate a switching of the system between a first respiratory mode where the device allowing delivery of the first flow of gases to an outlet of the first patient interface when the second patient interface is absent from the patient, and a second respiratory mode where the device reducing or stopping delivery of the first flow of gases to the outlet of the first patient interface when the second patient interface is located together with the first patient interface upon the patient.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: July 21, 2020
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Bruce Gordon Holyoake, Dexter Chi Lun Cheung, Anil Patel, Seyed Ahmad Reza Nouraei, Milanjot Singh Assi, Thomas Heinrich Barnes, Alicia Jerram Hunter Evans, Craig Karl White, Matthew Jon Payton, Laith Adeeb Hermez, German Klink, Samantha Dale Oldfield, Taylor James Edwards, Aidan Robert Burgess
  • Patent number: 10716908
    Abstract: An infant positive airway pressure (PAP) or continuous positive airway pressure (CPAP) device and related patient interface and system, which can provide a flow of breathing gas to the patient interface. The device can be incorporated into the patient interface and includes at least one interior passage in the shape of a nozzle having a throat, a first portion upstream of the throat and a second portion downstream of the throat relative to the flow of breathing gas. The passage has a vent opening within the second portion and the interior passage defines a continuously curved surface extending between the throat and the vent opening. The second portion of the nozzle preferably is divergent and the first portion can be convergent or non-convergent (e.g., constant cross-section).
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: July 21, 2020
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Callum James Thomas Spence, Rachael Porter, Craig Karl White, Alicia Jerram Hunter Evans
  • Publication number: 20200114109
    Abstract: Nasal cannula assemblies for providing respiratory therapy to patients are provided. A nasal cannula assembly can include a cannula, an optional manifold which may be removable, a gas supply tube, and a securement mechanism. Securement mechanisms can include headgear straps, cheek pads, or an adhesive nose strip. A nasal cannula assembly can also include a lanyard, lanyard clip, and/or lanyard connector to help support the weight of a main gas delivery conduit.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 16, 2020
    Inventors: Jason Allan Klenner, Milanjot Singh Assi, Mark Thomas O'Connor, Callum James Thomas Spence, Caroline Geraldine Hopkins, Neil Gray Duthie, Craig Karl White, Alicia Jerram Hunter Evans, Brent Ian Laing, Sooji Hope Clarkson, Laurence Gulliver