Patents by Inventor AliReza Alian

AliReza Alian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210151593
    Abstract: A method comprising: providing a semiconductor structure including: a channel, a barrier, a non-conductive structure over the barrier, the non-conductive structure including a cavity having sidewalls separated by a first distance, providing a first non-conductive layer conformally over the non-conductive structure, thereby covering the sidewalls and the bottom surface of the cavity, etching the first non-conductive layer in such a way that it is removed from at least part of the bottom surface but still covers the sidewalls, etching through the bottom surface at most until the channel is reached, by using the first non-conductive layer covering the sidewalls as a mask, thereby forming an opening in the bottom surface of the non-conductive structure, the opening having sidewalls separated by a second distance, smaller than the first distance, and completely removing the first non-conductive layer.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 20, 2021
    Inventors: Niamh Waldron, AliReza Alian, Uthayasankaran Peralagu
  • Patent number: 10608085
    Abstract: The disclosed technology relates generally to semiconductor devices, and more particularly to field-effect transistors (FETs) comprising nanostructures, such as nanowires, fins, and two dimensional materials. In an aspect, a FET device comprises a substrate having an insulating surface and a vertical structure extending in a direction substantially perpendicular to the insulating surface, where the vertical structure has at least outer surfaces formed of an insulating material. The FET device additionally includes a thin layer of two-dimensional (2D) material enveloping the vertical structure and at least part of the insulating surface. The FET device additionally includes two electrodes in electrical contact with the thin layer of 2D material, where one of the electrodes is formed on top of the vertical structure.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: March 31, 2020
    Assignee: IMEC vzw
    Inventors: AliReza Alian, Salim El Kazzi
  • Publication number: 20180182849
    Abstract: The disclosed technology relates generally to semiconductor devices, and more particularly to field-effect transistors (FETs) comprising nanostructures, such as nanowires, fins, and two dimensional materials. In an aspect, a FET device comprises a substrate having an insulating surface and a vertical structure extending in a direction substantially perpendicular to the insulating surface, where the vertical structure has at least outer surfaces formed of an insulating material. The FET device additionally includes a thin layer of two-dimensional (2D) material enveloping the vertical structure and at least part of the insulating surface. The FET device additionally includes two electrodes in electrical contact with the thin layer of 2D material, where one of the electrodes is formed on top of the vertical structure.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 28, 2018
    Inventors: AliReza Alian, Salim El Kazzi
  • Patent number: 9741848
    Abstract: A Tunnel Field-Effect Transistor (TFET) is provided comprising a source-channel-drain structure of a semiconducting material. The source-channel-drain structure comprises a source region being n-type or p-type doped, a drain region oppositely doped than the source region and an intrinsic or lowly doped channel region situated between the source region and the drain region. The TFET further comprises a reference gate structure covering the channel region and a source-side gate structure aside of the reference gate structure wherein the work function and/or electrostatic potential of the source-side gate structure and the reference work function and/or electrostatic potential of the reference gate structure are selected for allowing the tunneling mechanism of the TFET device in operation to occur at the interface or interface region between the source-side gate structure and the reference gate structure in the channel region.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 22, 2017
    Assignee: IMEC VZW
    Inventors: Mohammad Ali Pourghaderi, AliReza Alian
  • Patent number: 9704992
    Abstract: A Tunnel Field-Effect Transistor comprising a source-channel-drain structure, the source-channel-drain structure comprising a source region doped with a dopant element having a first dopant type and a first doping concentration; a drain region doped with a dopant element having a second dopant type opposite compared to the first dopant type, and a second doping concentration, a channel region situated between the source region and the drain region and having an intrinsic doping concentration, or lowly doped concentration being lower than the doping concentration of the source and drain regions, a gate stack comprising a gate electrode on a gate dielectric layer, the gate stack covering at least part of the channel region and extending at the source side up to at least an interface between the source region and the channel region, a drain extension region in the channel region or on top thereof, the drain extension region being formed from a material suitable for creating, and having a length/thickness ratio s
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: July 11, 2017
    Assignees: IMEC VZW, Katholieke Universiteit Leuven
    Inventors: Anne Verhulst, Devin Verreck, AliReza Alian
  • Publication number: 20170179283
    Abstract: A Tunnel Field-Effect Transistor (TFET) is provided comprising a source-channel-drain structure of a semiconducting material. The source-channel-drain structure comprises a source region being n-type or p-type doped, a drain region oppositely doped than the source region and an intrinsic or lowly doped channel region situated between the source region and the drain region. The TFET further comprises a reference gate structure covering the channel region and a source-side gate structure aside of the reference gate structure wherein the work function and/or electrostatic potential of the source-side gate structure and the reference work function and/or electrostatic potential of the reference gate structure are selected for allowing the tunneling mechanism of the TFET device in operation to occur at the interface or interface region between the source-side gate structure and the reference gate structure in the channel region.
    Type: Application
    Filed: October 28, 2016
    Publication date: June 22, 2017
    Inventors: Mohammad Ali Pourghaderi, AliReza Alian
  • Publication number: 20170170314
    Abstract: A Tunnel Field-Effect Transistor comprising a source-channel-drain structure, the source-channel-drain structure comprising a source region doped with a dopant element having a first dopant type and a first doping concentration; a drain region doped with a dopant element having a second dopant type opposite compared to the first dopant type, and a second doping concentration, a channel region situated between the source region and the drain region and having an intrinsic doping concentration, or lowly doped concentration being lower than the doping concentration of the source and drain regions, a gate stack comprising a gate electrode on a gate dielectric layer, the gate stack covering at least part of the channel region and extending at the source side up to at least an interface between the source region and the channel region, a drain extension region in the channel region or on top thereof, the drain extension region being formed from a material suitable for creating, and having a length/thickness ratio s
    Type: Application
    Filed: October 28, 2016
    Publication date: June 15, 2017
    Inventors: Anne Verhulst, Devin Verreck, AliReza Alian