Patents by Inventor Alireza Janani

Alireza Janani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11832582
    Abstract: A leg (205) detection system comprising: a robotic arm (200) comprising a gripping portion (208) for holding a teat cup (203, 210) for attaching to a teat (1102, 1104, 1106, 1108, 203S, 203) of a dairy livestock (200, 202, 203); an imaging system coupled to the robotic arm (200) and configured to capture a first three-dimensional (3D) image (138, 2400, 2500) of a rearview of the dairy livestock (200, 202, 203) in a stall (402), the imaging system comprising a 3D camera (136, 138) or a laser (132), wherein each pixel of the first 3D image (138, 2400, 2500) is associated with a depth value; one or more memory (104) devices configured to store a reference (3D) 3D image (138, 2400, 2500) of the stall (402) without any dairy livestock (200, 202, 203); and a processor (102) communicatively coupled to the imaging system and the one or more memory (104) devices, the processor (102) configured to: access the first 3D image (138, 2400, 2500) and the reference (3D) 3D image (138, 2400, 2500); subtract the first 3D image
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: December 5, 2023
    Assignee: Technologies Holdings Corp.
    Inventors: Mark A. Foresman, Bradley J. Prevost, Marijn Van Aart, Peter Willem van der Sluis, Alireza Janani
  • Publication number: 20200344972
    Abstract: A leg (205) detection system comprising: a robotic arm (200) comprising a gripping portion (208) for holding a teat cup (203, 210) for attaching to a teat (1102, 1104, 1106, 1108, 203S, 203) of a dairy livestock (200, 202, 203); an imaging system coupled to the robotic arm (200) and configured to capture a first three-dimensional (3D) image (138, 2400, 2500) of a rearview of the dairy livestock (200, 202, 203) in a stall (402), the imaging system comprising a 3D camera (136, 138) or a laser (132), wherein each pixel of the first 3D image (138, 2400, 2500) is associated with a depth value; one or more memory (104) devices configured to store a reference (3D) 3D image (138, 2400, 2500) of the stall (402) without any dairy livestock (200, 202, 203); and a processor (102) communicatively coupled to the imaging system and the one or more memory (104) devices, the processor (102) configured to: access the first 3D image (138, 2400, 2500) and the reference (3D) 3D image (138, 2400, 2500); subtract the first 3D image
    Type: Application
    Filed: August 17, 2017
    Publication date: November 5, 2020
    Applicant: Technologies Holdings Corp.
    Inventors: Mark A. Foresman, Bradley J. Prevost, Marijn Van Aart, Peter Willem Van Der Sluis, Alireza Janani
  • Patent number: 10477827
    Abstract: A system includes a robotic arm, a laser, and a processor. The processor is configured to determine that a teat cup is to be attached to a front teat of a dairy livestock, and in response, determine an amount of separation between the front teat and a rear teat. The processor is further configured to calculate, if the amount of separation between the front and rear teats is greater than or equal to a predetermined distance, an updated front teat position based on the amount of separation between the front and rear teats and command the robotic arm to move to the updated front teat position. The processor is further configure to determine whether the front teat is found in a scan of the dairy livestock by the laser, and if so, command the robotic arm to attach the teat cup to the front teat.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: November 19, 2019
    Assignee: Technologies Holdings Corp.
    Inventors: Mark A. Foresman, Alireza Janani, Peter Willem van der Sluis, Robert J. Godfrey
  • Patent number: 10383305
    Abstract: A leg (205) detection system comprising: a robotic arm (200) comprising a gripping portion (208) for holding a teat cup (203, 210) for attaching to a teat (1102, 1104, 1106, 1108, 2038, 203) of a diary livestock (200, 202, 203); an imaging system coupled to the robotic arm (200) and configured to capture a first three-dimensional (3D) image (138, 2400, 2500) of a rearview of the dairy livestock (200, 202, 203) in a stall (402), the imaging system comprising a 3D camera (136, 138) or a laser (132), wherein each pixel of the first 3D image (138, 2400, 2500) is associated with a depth value; one or more memory (104) devices configured to store a reference (3D) 3D image (138, 2400, 2500) of the stall (402) without any dairy livestock (200, 202, 203); and a processor (102) communicatively coupled to the imaging system and the one or more memory (104) devices, the processor (102) configured to: access the first 3D image (138, 2400, 2500) and the reference (3D) 3D image (138, 2400, 2500); subtract the first 3D image
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 20, 2019
    Assignee: Technologies Holdings Corp.
    Inventors: Mark A. Foresman, Bradley J. Prevost, Marijn Van Aart, Peter Willem van der Sluis, Alireza Janani
  • Publication number: 20180049396
    Abstract: A system includes a robotic arm, a laser, and a processor. The processor is configured to determine that a teat cup is to be attached to a front teat of a dairy livestock, and in response, determine an amount of separation between the front teat and a rear teat. The processor is further configured to calculate, if the amount of separation between the front and rear teats is greater than or equal to a predetermined distance, an updated front teat position based on the amount of separation between the front and rear teats and command the robotic arm to move to the updated front teat position. The processor is further configure to determine whether the front teat is found in a scan of the dairy livestock by the laser, and if so, command the robotic arm to attach the teat cup to the front teat.
    Type: Application
    Filed: March 10, 2017
    Publication date: February 22, 2018
    Inventors: Mark A. Foresman, Alireza Janani, Peter Willem van der Sluis, Robert J. Godfrey