Patents by Inventor Alireza Yasan

Alireza Yasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11575843
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: February 7, 2023
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jukka Alasirnio, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Publication number: 20210014429
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Application
    Filed: September 4, 2020
    Publication date: January 14, 2021
    Inventors: Jukka Alasirnio, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Patent number: 10771714
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 8, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jukka Alasirniö, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Patent number: 10510149
    Abstract: Techniques are described for generating a distance map (e.g., a map of disparity, depth or other distance values) for image elements (e.g., pixels) of an image capture device. The distance map is generated based on an initial distance map (obtained, e.g., using a block or code matching algorithm) and a segmentation map (obtained using a segmentation algorithm). In some instances, the resulting distance map can be less sparse than the initial distance map, can contain more accurate distance values, and can be sufficiently fast for real-time or near real-time applications. The resulting distance map can be converted, for example, to a color-coded distance map of a scene that is presented on a display device.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: December 17, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD
    Inventors: Florin Cutu, Alireza Yasan, Xin Liu
  • Patent number: 10509147
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array (L1) comprising a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array (S1) of light sources (1) for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced. Devices comprising such apparatuses can be used for depth mapping.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 17, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Mueller, Ali Naqavi, Daniel Infante Gomez, Moshe Doron, Matthias Gloor, Alireza Yasan, Hartmut Rudmann, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Patent number: 10497141
    Abstract: A brightness image of a scene is converted into a corresponding frequency domain image and it is determined whether a threshold condition is satisfied for each of one or more regions of interest in the frequency domain image, the threshold condition being that the number of frequencies in the region of interest is at least as high as a threshold value. The results of the determination can be used to facilitate selection of an appropriate block matching algorithm for deriving disparity or other distance data and/or to control adjustment of an illumination source that generates structured light for the scene.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: December 3, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Chi Zhang, Alireza Yasan, Hendrik Volkerink
  • Patent number: 10349037
    Abstract: The present disclosure describes structured-stereo imaging assemblies including separate imagers for different wavelengths. The imaging assembly can include, for example, multiple imager sub-arrays, each of which includes a first imager to sense light of a first wavelength or range of wavelengths and a second imager to sense light of a different second wavelength or range of wavelengths. Images acquired from the imagers can be processed to obtain depth information and/or improved accuracy. Various techniques are described that can facilitate determining whether any of the imagers or sub-arrays are misaligned.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: July 9, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Moshe Doron, Ohad Meitav, Markus Rossi, Dmitry Ryuma, Alireza Yasan
  • Publication number: 20190005671
    Abstract: A brightness image of a scene is converted into a corresponding frequency domain image and it is determined whether a threshold condition is satisfied for each of one or more regions of interest in the frequency domain image, the threshold condition being that the number of frequencies in the region of interest is at least as high as a threshold value. The results of the determination can be used to facilitate selection of an appropriate block matching algorithm for deriving disparity or other distance data and/or to control adjustment of an illumination source that generates structured light for the scene.
    Type: Application
    Filed: December 23, 2016
    Publication date: January 3, 2019
    Inventors: Chi Zhang, Alireza Yasan, Hendrik Volkerink
  • Publication number: 20180267214
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array (L1) comprising a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array (S1) of light sources (1) for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced. Devices comprising such apparatuses can be used for depth mapping.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 20, 2018
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Mueller, Ali Naqavi, Daniel Infante Gomez, Moshe Doron, Matthias Gloor, Alireza Yasan, Hartmut Rudmann, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Publication number: 20180213201
    Abstract: Providing a disparity map includes acquiring first and second stereo images, binarizing the first stereo image to obtain a binarized image, and applying a block matching technique to the first and second stereo images to obtain an initial disparity map in which individual image elements are assigned a respective initial disparity value. For each respective image element, an updated disparity value that represents a product of the initial disparity value assigned to the image element and a value associated with the image element in the binarized image is obtained. An updated disparity map can be generated and represents the updated disparity values of the image elements.
    Type: Application
    Filed: July 13, 2016
    Publication date: July 26, 2018
    Inventors: Chi Zhang, Alireza Yasan, Xin Liu, Florin Cutu, Dmitry Ryuma
  • Publication number: 20180204329
    Abstract: Techniques are described for generating a distance map (e.g., a map of disparity, depth or other distance values) for image elements (e.g., pixels) of an image capture device. The distance map is generated based on an initial distance map (obtained, e.g., using a block or code matching algorithm) and a segmentation map (obtained using a segmentation algorithm). In some instances, the resulting distance map can be less sparse than the initial distance map, can contain more accurate distance values, and can be sufficiently fast for real-time or near real-time applications. The resulting distance map can be converted, for example, to a color-coded distance map of a scene that is presented on a display device.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 19, 2018
    Inventors: Florin Cutu, Alireza Yasan, Xin Liu
  • Publication number: 20180124327
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Application
    Filed: February 23, 2015
    Publication date: May 3, 2018
    Inventors: Jukka Alasirnio, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Publication number: 20170034499
    Abstract: The present disclosure describes structured-stereo imaging assemblies including separate imagers for different wavelengths. The imaging assembly can include, for example, multiple imager sub-arrays, each of which includes a first imager to sense light of a first wavelength or range of wavelengths and a second imager to sense light of a different second wavelength or range of wavelengths. Images acquired from the imagers can be processed to obtain depth information and/or improved accuracy. Various techniques are described that can facilitate determining whether any of the imagers or sub-arrays are misaligned.
    Type: Application
    Filed: March 31, 2015
    Publication date: February 2, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Moshe Doron, Ohad Meitav, Markus Rossi, Dmitry Ryuma, Alireza Yasan
  • Patent number: 9273846
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array comprising a multitude of transmissive or reflective microlenses which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array of light sources for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 1, 2016
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Müller, Ali Naqavi, Daniel Infante Gómez, Moshe Doron, Matthias Gloor, Alireza Yasan
  • Patent number: 9240035
    Abstract: A method for performing column/row pattern suppression in a digital input image includes creating a smoothed version of the input image by averaging a set of columns/rows neighboring around the column/row being corrected. A difference image is constructed by subtracting the smoothed image from the input image. New column/row intensities are computed from the difference image. An output image is constructed with suppressed column/row patterns by subtracting the new column/row intensities from the input image.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 19, 2016
    Assignee: Foveon, Inc.
    Inventors: Alireza Yasan, Lukac Rastislav
  • Publication number: 20140320496
    Abstract: A method for performing column/row pattern suppression in a digital input image includes creating a smoothed version of the input image by averaging a set of columns/rows neighboring around the column/row being corrected. A difference image is constructed by subtracting the smoothed image from the input image. New column/row intensities are computed from the difference image. An output image is constructed with suppressed column/row patterns by subtracting the new column/row intensities from the input image.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 30, 2014
    Applicant: Foveon, Inc.
    Inventors: Alireza Yasan, Lukac Rastislav
  • Patent number: 8687885
    Abstract: A method for performing column/row pattern suppression in a digital input image includes creating a smoothed version of the input image by averaging a set of columns/rows neighboring around the column/row being corrected. A difference image is constructed by subtracting the smoothed image from the input image. New column/row intensities are computed from the difference image. An output image is constructed with suppressed column/row patterns by subtracting the new column/row intensities from the input image.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: April 1, 2014
    Assignee: Foveon, Inc.
    Inventors: Alireza Yasan, Rastislav Lukac
  • Publication number: 20120294526
    Abstract: A method for performing column/row pattern suppression in a digital input image includes creating a smoothed version of the input image by averaging a set of columns/rows neighboring around the column/row being corrected. A difference image is constructed by subtracting the smoothed image from the input image. New column/row intensities are computed from the difference image. An output image is constructed with suppressed column/row patterns by subtracting the new column/row intensities from the input image.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Inventors: Alireza Yasan, Rastislav Lukac