Patents by Inventor Alison J McMillan

Alison J McMillan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6893478
    Abstract: An air/oil separator (40) comprises a rotor (60) and a casing (62) surrounding the rotor (60). The casing (60) has an inlet (64) at a first axial position (A) for the supply of an air and oil mixture into the air/oil separator (40). The rotor (60) has an outlet (66) for discharging cleaned air from the air/oil separator (40). The rotor (60) carries a plurality of porous members (68, 70, 72). The porous members (68, 70, 72) have an inlet (74) at a second axial position (B) and an outlet (76) at a third axial position (C). The third axial position (C) is arranged axially between the first axial position (A) and the second axial position (B). A first passage (88) supplies the air and oil mixture from the inlet (64) in the casing (62) to the inlet (74) to the porous members (68, 70, 72). A second passage (94) supplies cleaned air from the porous members (68, 70, 72) to the outlet (66) in the rotor (60).
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: May 17, 2005
    Assignee: Rolls-Royce plc
    Inventors: Ian C Care, Colin A Foord, Alison J McMillan, Michael J Mountney
  • Publication number: 20040141837
    Abstract: A gas turbine engine rotor blade containment assembly comprises a generally cylindrical, or frustoconical, stiff containment casing (54), a generally cylindrical, or frustoconical, flexible structure (62) arranged within and spaced radially from the stiff containment casing (54) by crushable structures (64, 66) at axially spaced positions on the flexible structure (62). A viscoelastic material (68) is arranged to fill the space (70) between the stiff containment casing (54), the flexible structure (62) and the crushable structures (64, 66). The viscoelastic material (68) provides local stiffening of the blade containment assembly in the region of a fan blade (34) impact and provides energy dissipation by viscoelastic damping of the flexing of the flexible structure (62) and plastic deformation in the crushing of the crushable structures (64, 66).
    Type: Application
    Filed: December 11, 2003
    Publication date: July 22, 2004
    Inventors: Alison J. McMillan, Ian C. D. Care
  • Publication number: 20040105588
    Abstract: A computer system programmed to process a large data set includes means for analysing the data set. The means for analysing the data set typically comprises a means for finite element analysis. The computer system also includes means for applying a data compression technique to the analysed data set such that the compressed analysed data set has high fidelity in regions of interest and has lower fidelity in regions of lesser interest. The data compression technique comprises the use of a wavelet compression technique. The computer system comprises a high specification server and a local workstation. This compressed analysed data set is easily managed by the local workstation to produce different cross-sectional displays without reusing the high capability server. The analysed data set for example comprises a 4D data set of a fan blade containment analysis of a casing.
    Type: Application
    Filed: November 25, 2003
    Publication date: June 3, 2004
    Inventors: Alison J. McMillan, Graham Watson
  • Publication number: 20040098956
    Abstract: An air/oil separator (40) comprises a rotor (60) and a casing (62) surrounding the rotor (60). The casing (60) has an inlet (64) at a first axial position (A) for the supply of an air and oil mixture into the air/oil separator (40). The rotor (60) has an outlet (66) for discharging cleaned air from the air/oil separator (40). The rotor (60) carries a plurality of porous members (68, 70, 72). The porous members (68, 70, 72) have an inlet (74) at a second axial position (B) and an outlet (76) at a third axial position (C). The third axial position (C) is arranged axially between the first axial position (A) and the second axial position (B). A first passage (88) supplies the air and oil mixture from the inlet (64) in the casing (62) to the inlet (74) to the porous members (68, 70, 72). A second passage (94) supplies cleaned air from the porous members (68, 70, 72) to the outlet (66) in the rotor (60).
    Type: Application
    Filed: March 6, 2003
    Publication date: May 27, 2004
    Inventors: Ian C. Care, Colin A. Foord, Alison J. McMillan, Michael J. Mountney
  • Publication number: 20040046324
    Abstract: A seal and method of making seals utilises folds in order to form creases in a length of material such that the creases reinforce individual seal elements or surfaces whilst perforations or slots in a seal edge allow air leakage from one side of the seal element or surface to the other. Thus, air pressurisation can take place between spaced seal elements or surfaces and this allows air flotation or riding of a rotating component relative to a static housing component. The perforations are typically graduated from the seal edge in order to provide the best pressurisation and air-riding effect for proximity or gap control between the sealing edge and the rotating component surface. The slots effectively provide flexibility to the sealing edge such that the seal component emulates a brush seal.
    Type: Application
    Filed: July 31, 2003
    Publication date: March 11, 2004
    Inventor: Alison J. McMillan