Patents by Inventor ALISON M. POUCH

ALISON M. POUCH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11551355
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: January 10, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Benjamin M Jackson, Robert C Gorman, Joseph H Gorman, III, Alison M Pouch, Chandra M Sehgal, Paul A Yushkevich, Brian B Avants, Hongzhi Wang
  • Publication number: 20200394798
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 17, 2020
    Inventors: Benjamin M. Jackson, Robert C. Gorman, Joseph H. Gorman, III, Alison M. Pouch, Chandra M. Sehgal, Paul A. Yushkevich, Brian B. Avants, Hongzhi Wang
  • Patent number: 10783631
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 22, 2020
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Benjamin M. Jackson, Robert C. Gorman, Joseph H. Gorman, III, Alison M. Pouch, Chandra M. Sehgal, Paul A. Yushkevich, Brian B. Avants, Hongzhi Wang
  • Publication number: 20190213737
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventors: Benjamin M. Jackson, Robert C. Gorman, Joseph H. Gorman, III, Alison M. Pouch, Chandra M. Sehgal, Paul A. Yushkevich, Brian B. Avants, Hongzhi Wang
  • Patent number: 10235754
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: March 19, 2019
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Benjamin M. Jackson, Robert C. Gorman, Joseph H. Gorman, Alison M. Pouch, Chandra M. Sehgal, Paul A. Yushkevich, Brian B. Avants, Hongzhi Wang
  • Publication number: 20170365057
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Application
    Filed: September 6, 2017
    Publication date: December 21, 2017
    Inventors: Benjamin M. Jackson, Robert C. Gorman, Joseph H. Gorman, Alison M. Pouch, Chandra M. Sehgal, Paul A. Yushkevich, Brian B. Avants, Hongzhi Wang
  • Patent number: 9779496
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: October 3, 2017
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Benjamin M. Jackson, Robert C. Gorman, Joseph H. Gorman, Alison M. Pouch, Chandra M. Sehgal, Paul A. Yushkevich, Brian B. Avants, Hongzhi Wang
  • Patent number: 9406142
    Abstract: A fully automatic method for segmentation of the mitral leaflets in 3D transesophageal echocardiographic (3D TEE) images is provided. The method combines complementary probabilistic segmentation and geometric modeling techniques to generate 3D patient-specific reconstructions of the mitral leaflets and annulus from 3D TEE image data with no user interaction. In the model-based segmentation framework, mitral leaflet geometry is described with 3D continuous medial representation (cm-rep). To capture leaflet geometry in a target 3D TEE image, a pre-defined cm-rep template of the mitral leaflets is deformed such that the negative log of a Bayesian posterior probability is minimized. The likelihood of the objective function is given by a probabilistic segmentation of the mitral leaflets generated by multi-atlas joint label fusion, while the validity constraints and regularization terms imposed by cm-rep act as shape priors that preserve leaflet topology and constrain model fitting.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: August 2, 2016
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Joseph H. Gorman, III, Alison M. Pouch, Robert C. Gorman, Hongzhi Wang, Paul Yushkevich, Benjamin M Jackson, Brian B. Avants, Chandra M. Sehgal
  • Publication number: 20160035087
    Abstract: A method is provided for measuring or estimating stress distributions on heart valve leaflets by obtaining three-dimensional images of the heart valve leaflets, segmenting the heart valve leaflets in the three-dimensional images by capturing locally varying thicknesses of the heart valve leaflets in three-dimensional image data to generate an image-derived patient-specific model of the heart valve leaflets, and applying the image-derived patient-specific model of the heart valve leaflets to a finite element analysis (FEA) algorithm to estimate stresses on the heart valve leaflets. The images of the heart valve leaflets may be obtained using real-time 3D transesophageal echocardiography (rt-3DTEE). Volumetric images of the mitral valve at mid-systole may be analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation to obtain, a compact representation of shape.
    Type: Application
    Filed: March 12, 2014
    Publication date: February 4, 2016
    Inventors: Benjamin M. Jackson, Robert C. Gorman, Joseph H. Gorman, Alison M. Pouch, Chandra M. Sehgal, Paul A. Yushkevich, Brian B. Avants, Hongzhi Wang
  • Publication number: 20150178938
    Abstract: A fully automatic method for segmentation of the mitral leaflets in 3D transesophageal echocardiographic (3D TEE) images is provided. The method combines complementary probabilistic segmentation and geometric modeling techniques to generate 3D patient-specific reconstructions of the mitral leaflets and annulus from 3D TEE image data with no user interaction. In the model-based segmentation framework, mitral leaflet geometry is described with 3D continuous medial representation (cm-rep). To capture leaflet geometry in a target 3D TEE image, a pre-defined cm-rep template of the mitral leaflets is deformed such that the negative log of a Bayesian posterior probability is minimized. The likelihood of the objective function is given by a probabilistic segmentation of the mitral leaflets generated by multi-atlas joint label fusion, while the validity constraints and regularization terms imposed by cm-rep act as shape priors that preserve leaflet topology and constrain model fitting.
    Type: Application
    Filed: October 8, 2014
    Publication date: June 25, 2015
    Inventors: JOSEPH H. GORMAN, III, ALISON M. POUCH, ROBERT C. GORMAN, HONGZHI WANG, PAUL YUSHKEVICH, BENJAMIN M. JACKSON, BRIAN B. AVANTS, CHANDRA M. SEHGAL