Patents by Inventor Allan C. Shuros

Allan C. Shuros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130310889
    Abstract: Described are methods and devices for improving diastolic function with electrostimulation in heart failure patients who exhibit relatively normal systolic function. Such patients are characterized by impaired myocardial relaxation during diastole that prevents adequate filling of the ventricles during diastole to thereby reduce cardiac output. An implantable device is described for effecting strategic and periodic stimulation of the sympathetic nervous system to elicit myocardial adrenergic activation for improved myocardial relaxation.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy, Guy Alvarez
  • Patent number: 8588907
    Abstract: A device and method for delivering electrical stimulation to the heart in order to improve cardiac function in heart failure patients. The stimulation is delivered as high-output pacing in which the stimulation is excitatory and also of sufficient energy to augment myocardial contractility. In order to provide a consistent hemodynamic response, the high-output pacing is optimized by delivering it using different parameter sets, evaluating the hemodynamic response thereto as reflected by one or more measured physiological variables, and selecting the parameter set with the best hemodynamic response.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Allan C. Shuros, Christopher Hartemink
  • Publication number: 20130296965
    Abstract: An apparatus comprises a first stimulation circuit and a control circuit. The stimulation circuit is configured to be electrically coupled to a first electrode assembly that is configured to deliver electrical sub-myocardial activation stimulation to a coronary baroreceptor from a location within a left atrial appendage of a heart. The stimulation circuit is further configured to generate the electrical stimulation for delivery to the coronary baroreceptor via the first electrode assembly. The control circuit is wirelessly or conductively coupled to the first stimulation circuit and is configured to control delivery of the electrical stimulation.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 7, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Eric A. Mokelke, Allan C. Shuros, Jason J. Hamann, William Conrad Stoffregen
  • Publication number: 20130289649
    Abstract: A first fluid status indicator of a pulmonary fluid status associated with pulmonary edema and a second fluid status indicator of a non-pulmonary fluid status can be used to provide an alert or to control a therapy for pulmonary edema. Additionally, intermittent cardiac blood volume redistribution therapy can be used to provide cardiac conditioning in heart failure patients.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Inventors: Viktoria A. Averina, Jason J. Hamann, Stephen Ruble, Allan C. Shuros
  • Patent number: 8565880
    Abstract: This document discusses, among other things, a system and method for generating a stimulation energy to provide His-bundle stimulation for a cardiac cycle, receiving electrical information from the heart over at least a portion of the cardiac cycle, determining a characteristic of at least a portion of the received electrical information for the cardiac cycle, and classifying the cardiac cycle using the determined characteristic.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 22, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, Allan C. Shuros, Jiang Ding, Scott A. Meyer, Shibaji Shome
  • Publication number: 20130274821
    Abstract: Methods and systems to modulate timing intervals for pacing therapy are described. For each cardiac cycle, one or both of an atrioventricular (A-V) timing interval and an atrial (A-A) timing interval are modulated to oppose beat-to-beat ventricular (V-V) timing variability. Pacing therapy is delivered using the modulated timing intervals.
    Type: Application
    Filed: June 11, 2013
    Publication date: October 17, 2013
    Inventors: Donald L. Hopper, Yinghong Yu, Allan C. Shuros, Shantha Arcot-Krishnamurthy, Gerrard M. Carlson, Jeffrey E. Stahmann
  • Publication number: 20130268014
    Abstract: A system for use during revascularization includes a catheter having an adjustable balloon for delivery a stent, one or more pacing electrodes for delivering one or more pacing pulses to a patient's heart, and a pacemaker configured to generate the one or more pacing pulses to be delivered to the heart via the one or more pacing electrodes. The one or more pacing pulses are delivered at a rate substantially higher than the patient's intrinsic heart rate without being synchronized to the patient's intrinsic cardiac contractions, and are delivered before, during, or after an ischemic event to prevent or reduce cardiac injury.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 10, 2013
    Inventors: Allan C. Shuros, Tamara Colette Baynham, Jihong Qu, Joseph M. Pastore, Andrew P. Kramer, Frits W. Prinzen, Ward Y.R. Vanagt, Richard N. Cornelussen
  • Publication number: 20130261685
    Abstract: A cardiac arrhythmia can be identified, such as a tachycardia or fibrillation episode (atrial or ventricular). In responses to the detected arrhythmia, a coordinated electrostimulation therapy can be provided using at least one of a defibrillation shock therapy, a pre-shock conditioning therapy, or a post-shock conditioning therapy. The pre-shock or post-shock conditioning therapies can include electrostimulation therapies provided to the natural electrical conduction system of the heart between the atrioventricular node and the Purkinje fibers, inclusive, such as at or near a His bundle of a heart. In an example, a defibrillation threshold can be reduced by providing a pre-shock conditioning electrostimulation therapy to the natural electrical conduction system of the heart between the atrioventricular node and the Purkinje fibers, inclusive, such as at or near a His bundle.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 3, 2013
    Inventors: Allan C. Shuros, Jiang Ding, Dan Li, Yinghong Yu
  • Patent number: 8548586
    Abstract: This document discusses, among other things, an apparatus comprising at least one implantable cardiac depolarization sensing circuit, an electrical stimulation circuit, and a pacing mode controller. The implantable cardiac depolarization sensing circuit is configured to obtain a sensed depolarization signal from a ventricle and the electrical stimulation circuit is configured to provide pacing electrical stimulation energy to at least one implantable ventricular electrode. The pacing mode controller delivers pacing therapy according to a first pacing mode that is a normal operating mode, and delivers pacing therapy according to second and third pacing modes. The second and third pacing modes increase mechanical stress on at least a particular portion of the ventricle as compared to the pacing therapy delivered during the first pacing mode. The pacing mode controller alternates between the second and third pacing modes when switched from the normal operating mode to a stress augmentation mode.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: October 1, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, John R. Zielinski, Joseph M. Pastore, Jeffrey E. Stahmann, Allan C. Shuros, Robert Shipley
  • Publication number: 20130237954
    Abstract: Renal function may be modulated by an implantable device having one or more leads or catheters disposed near the kidney via the lymphatic system. In one embodiment, lymphatic drainage from the kidney is modulated to increase or decrease tubular reabsorption of salt and water. The renal function modulation therapy may be delivered in an open-loop or closed-loop fashion, with the latter dependent upon a physiological variable such as blood pressure or cardiac output.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, M. Jason Brooke, Tasneem Poonawala
  • Patent number: 8532770
    Abstract: Systems and methods to monitor cardiac mechanical vibrations using information indicative of lead motion are described. In an example, a system including an implantable medical device can include an excitation circuit configured to provide a non-tissue stimulating, non-therapeutic electrical excitation signal to a portion of an implantable lead. A receiver circuit can be configured to obtain information indicative of a mechanical vibration of the implantable lead due at least in part to one or more of an impact of at least a portion of the heart to the implantable lead, or friction contact between the implantable lead and cardiac tissue. The system can include a processor circuit configured to determine one or more of a lead mechanical status, or information indicative of valvular activity using the information indicative of the mechanical vibration of the implantable lead.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 10, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Allan C. Shuros, Krzysztof Z. Siejko, David C. Olson, Frank Ingle
  • Patent number: 8521278
    Abstract: A pacing system delivers cardiac protection pacing to protect the heart from injuries. The pacing system receives a set of inputs and calculates parameters for delivering optimized cardiac protection pacing tailored for different stress levels. The system automatically adjusts heart rate to optimize cardiac protection pacing in a closed-loop system. In one embodiment, a method for delivering pacing pulses for cardiac protection is provided. Intrinsic atrioventricular (AV) intervals are sensed. The intrinsic AV interval and a predetermined equation relating the AV interval to an optimal AV delay are used to provide a maximum positive rate of left ventricular pressure change during systole. An AV delay is calculated using a predetermined percentage of the optimal AV delay to deliver ventricular pacing pulses to provide a desired level of stress for cardiac protective pacing therapy (CPPT) to provide a cardiac conditioning therapy to improve autonomic balance.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 27, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy, Robert Shipley
  • Patent number: 8509892
    Abstract: A cardiac rhythm management system identifies a relationship between one or more hemodynamic parameters sensed from a patient and levels of hemodynamic tolerability of the patient. The identified relationship allows an implantable medical device to control delivery of anti-tachyarrhythmia therapy using the patient's hemodynamic tolerability during a detected tachyarrhythmia episode, in addition to classifying the detected tachyarrhythmia episode by its type and origin.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: August 13, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Dan Li
  • Patent number: 8504151
    Abstract: Systems and methods using a heart valve and an implantable medical device, such as for event detection and optimization of cardiac output. The cardiac management system includes a heart valve, having a physiological sensor. The physiological sensor is adapted to measure at least one of an intrinsic electrical cardiac parameter, a hemodynamic parameter or the like. The system further includes an implantable electronics unit, such as a cardiac rhythm management unit, coupled to the physiological sensor of the heart valve to receive physiological information. The electronics unit is adapted to use the received physiological information to control delivery of an electrical output to the subject.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: August 6, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Michael J. Kane
  • Patent number: 8498704
    Abstract: Described are methods and devices for improving diastolic function with electrostimulation in heart failure patients who exhibit relatively normal systolic function. Such patients are characterized by impaired myocardial relaxation during diastole that prevents adequate filling of the ventricles during diastole to thereby reduce cardiac output. An implantable device is described for effecting strategic and periodic stimulation of the sympathetic nervous system to elicit myocardial adrenergic activation for improved myocardial relaxation.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: July 30, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy, Guy Alvarez
  • Patent number: 8489204
    Abstract: A method and apparatus is described for detecting and localizing areas of myocardial infarction or ischemia. By pacing sites in proximity to the infarcted or ischemic region with appropriately timed pacing pulses, the region is pre-excited in a manner that lessens the mechanical stress to which it is subjected, thus reducing the metabolic demand of the region and the stimulus for remodeling.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: July 16, 2013
    Assignee: Caridac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Allan C. Shuros, Jiang Ding, Yinghong Yu, Michael J. Stucky, Christopher Hartemink
  • Patent number: 8483826
    Abstract: This document discusses, among other things, an apparatus comprising an implantable cardiac depolarization sensing circuit, an electrical stimulation circuit, and a pacing mode controller. The pacing mode controller is configured to deliver pacing therapy according to a first pacing mode that is a normal operating mode, and to deliver pacing therapy according to second and third pacing modes. The second and third pacing modes increase mechanical stress on at least a particular portion of the ventricle as compared to the pacing therapy delivered during the first pacing mode. The pacing mode controller alternates between the second and third pacing modes when pacing is changed from the normal operating mode to a stress augmentation mode. The pacing mode controller suspends the change from the normal operating mode to the stress augmentation mode when a condition to prevent the change is detected.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 9, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John R. Zielinski, Shantha Arcot-Krishnamurthy, Joseph M. Pastore, Jeffrey E. Stahmann, Allan C. Shuros
  • Patent number: 8483821
    Abstract: A first fluid status indicator of a pulmonary fluid status associated with pulmonary edema and a second fluid status indicator of a non-pulmonary fluid status can be used to provide an alert or to control a therapy for pulmonary edema. Additionally, intermittent cardiac blood volume redistribution therapy can be used to provide cardiac conditioning in heart failure patients.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: July 9, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Viktoria A. Averina, Jason J. Hamann, Stephen Ruble, Allan C. Shuros
  • Patent number: 8478392
    Abstract: Systems and methods for rhythm discrimination using the motion of an implantable lead are described. In an example, an implantable medical device can include a receiver circuit configured to be electrically coupled to an implantable lead and be configured to obtain information indicative of a movement of the implantable lead due at least in part to a motion of a heart. The device can include an arrhythmia detection circuit configured to determine an arrhythmia status using the information indicative of the movement of the implantable lead and an arrhythmia classification circuit configured to determine one or more of a location or a type of an arrhythmia, using the information indicative of the movement of the implantable lead, when the arrhythmia status indicates that an arrhythmia is occurring or has occurred.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: July 2, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Allan C. Shuros, Krzysztof Z. Siejko, David C. Olson, Frank Ingle
  • Publication number: 20130158621
    Abstract: Ectopic cardiac activity can be detected, such as in the absence of a diagnosed tachyarrhythmia episode. In response to the detected ectopic activity, electrostimulation can be provided to a para-Hisian region, such as to activate natural cardiac contraction mechanisms or to interrupt re-entrant cardiac activity. Subsequent ectopic cardiac activity can be detected, and subsequent electrostimulation can be provided to the para-Hisian region, such as according to one or more adjustable electrostimulation parameters.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 20, 2013
    Inventors: Jiang Ding, Allan C. Shuros, Dan Li, Yinghong Yu, Stephen J. Hahn