Patents by Inventor Allan Charles Shuros

Allan Charles Shuros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10994148
    Abstract: A leadless pacing device may include a power supply for providing a power supply voltage, a housing having a first end and a second end with a side extending between the first end and the second end, and a set of electrodes supported by the housing and in communication with the power supply. When leadless pacing device is disposed within a coronary sinus of a patient's heart, the housing may facilitate blood flow across the housing. The housing may include fixing members extending radially outward from the side of the housing to engage a wall of the coronary sinus and expand the coronary sinus to allow blood to flow past the housing. In some cases, the housing may have a recess along a length thereof that allows blood to flow past the housing. The recess may include a groove, a flat feature, or other feature.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 4, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Allan Charles Shuros, Lili Liu, G. Shantanu Reddy
  • Patent number: 10960216
    Abstract: Extraction devices for extracting chronically implanted devices such as leadless cardiac pacemakers (LCP). In some cases, the extraction devices may be configured to cut or tear through at least some of the tissue ingrowth around and/or over the chronically implanted device such that a retrieval feature on the chronically implanted device may be grasped for removal of the chronically implanted device.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: March 30, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Brian Soltis, Arjun D. Sharma
  • Patent number: 10926095
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. A medical system includes an electrostimulation circuit to generate His-bundle pacing (HBP) pulses for delivery at or near a His bundle of the heart. A control circuit may time the delivery of the HBP pulses within a tissue refractory period subsequent to an intrinsic His-bundle activation of a first His-bundle portion. Based on an evoked His-bundle activation of a second His-bundle portion, the system may determine whether correction of intra-Hisian block has occurred. The system additionally includes a threshold test circuit to determine an individualized pacing threshold representing minimal energy to excite the His bundle and to correct the cardiac conduction abnormality.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: February 23, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, David Arthur Casavant
  • Patent number: 10905465
    Abstract: A delivery device for delivering an implantable leadless pacing device may include a catheter shaft a distal holding section for receiving the implantable leadless pacing device. In some cases, the delivery device may include a flow-sensing device to determine a pressure or flow-rate of a fluid within the distal holding section. Also included may be a handle assembly and a deployment mechanism to deploy the implantable leadless pacing device.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: February 2, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Brian Soltis, Yinghong Yu, Arjun D. Sharma
  • Patent number: 10894167
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and a set of one or more electrodes supported by the housing. The housing may include a first a distal extension extending distally from the distal end thereof. One or more electrodes may be supported by the distal extension. The leadless pacing device may be releasably coupled to an expandable anchor mechanism.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 19, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Benjamin J. Haasl, Allan Charles Shuros, James O. Gilkerson, Lili Liu, Keith R. Maile, Brian Soltis, Brandon Christopher Fellows
  • Patent number: 10874861
    Abstract: A ventricular implantable medical device that is configured to detect an atrial timing fiducial from the ventricle. The ventricular implantable medical is configured to deliver a ventricular pacing therapy to the ventricle based on the detected atrial timing fiducial. If the ventricular implantable medical device temporarily fails to detect atrial activity because of noise, posture, patient activity or for any other reason, an atrial implantable medical device may be configured to communicate atrial events to the ventricular implantable medical device and the ventricular implantable medical device may synchronize the ventricular pacing therapy with the atrium activity based on those communications.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 29, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Jeffrey E. Stahmann, Allan Charles Shuros, Keith R. Maile, Benjamin J. Haasl
  • Publication number: 20200376280
    Abstract: Systems and methods for dynamically controlling His-bundle pacing (HBP) according to an indication of a rate-related or intermittent atrioventricular (AV) block in a subject are disclosed. An exemplary medical system includes an AV conduction monitor to detect an indication of either a presence or an absence of intermittent or rate-related AV conduction disturbance using physiologic information of the subject. In the event that an intermittent or rate-related AV conduction disturbance is present, a control circuit provides a control signal to an electrostimulation circuit to deliver HBP pulses. If there is no indication of intermittent or rate-related AV conduction disturbance, or a previously detected intermittent or rate-related AV conduction disturbance has been terminated, the control circuit withholds or discontinues delivery of the HBP pulses to promote intrinsic ventricular conduction and activation.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 3, 2020
    Inventors: Allan Charles Shuros, David Arthur Casavant
  • Patent number: 10758724
    Abstract: A delivery and deployment device may include a handle assembly and a shaft extending distally from the handle assembly. A device containment housing may be coupled to a distal region of the shaft and may extend distally therefrom. The distal containment housing may be configured to accommodate at least a portion of the IMD therein. The IMD may, for example, be a leadless pacemaker, a lead, a neurostimulation device, a sensor or any other suitable IMD. A plurality of electrodes may be distributed about an exterior surface of the device containment housing such that at least some of the plurality of electrodes may be positioned to test a potential IMD deployment location before deploying the IMD.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: September 1, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Yinghong Yu, Qi An, Keith R. Maile, Pramodsingh Hirasingh Thakur, Bin Mi, Jeffrey E. Stahmann, Viktoria A. Averina, Krzysztof Z. Siejko, Michael J. Kane, Allan Charles Shuros, Arjun D. Sharma, Brian Soltis
  • Patent number: 10751375
    Abstract: Embodiments herein include methods for enhancing post-ischemic functional recovery through administration of mitochondria and related devices and methods. In an embodiment, a method for enhancing post-ischemic functional recovery is included. The method can include harvesting somatic cells from a patient or a donor, converting the somatic cells into induced pluripotent stem cells, extracting mitochondria from the induced pluripotent stem cells, and transplanting the mitochondria into the patient. Other embodiments are also included herein.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: August 25, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Craig M. Stolen, Allan Charles Shuros
  • Patent number: 10737092
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example method for delivering the implantable leadless pacing device may include distally advancing an intermediate tubular member of a delivery system across the tricuspid valve and into the right ventricle. An outer tubular member of the delivery device may be torqued in a first direction to guide a distal holding section along the ventricular septum. The distal tip of the distal holding section may be releaseably secured to a tissue. After securing the distal tip of the distal holding section, the outer tubular member may be torqued in a second direction opposite to the first direction and the implantable leadless pacing device incrementally deployed.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 11, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Brian Soltis
  • Publication number: 20200246060
    Abstract: Extraction devices for extracting chronically implanted devices such as leadless cardiac pacemakers (LCP). In some cases, the extraction devices may be configured to cut, tear or ablate through at least some of the tissue ingrowth around and/or over the chronically implanted device such that a retrieval feature on the chronically implanted device may be grasped for removal of the chronically implanted device. Implantable medical devices such as LCPs may include features that facilitate their removal.
    Type: Application
    Filed: March 31, 2020
    Publication date: August 6, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Arjun D. Sharma, Brian Soltis
  • Patent number: 10729898
    Abstract: An apparatus comprises a cardiac signal sensing circuit configured for coupling electrically to a plurality of electrodes and to sense intrinsic cardiac activation at three or more locations within a subject's body using the electrodes; a stimulus circuit configured for coupling to the plurality of electrodes; a signal processing circuit electrically coupled to the cardiac signal sensing circuit and configured to determine a baseline intrinsic activation vector according to the sensed intrinsic cardiac activation; and a control circuit electrically coupled to the cardiac signal sensing circuit and stimulus circuit and configured to: initiate delivery of electrical pacing therapy using initial pacing parameters determined according to the baseline intrinsic activation vector; initiate sensing of a paced activation vector; and adjust one or more pacing therapy parameters according to the paced activation vector.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: August 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Yinghong Yu, David J. Ternes, Michael J. Kane, William J. Linder
  • Patent number: 10716944
    Abstract: A leadless pacing device may include a housing, a distal extension extending distally of a distal end of the housing, one or more electrodes supported by the housing, a distal electrode supported by the distal extension, and a processing module located within an interior space of the housing and electrically coupled to the one or more electrodes supported by the housing and the distal electrode supported by the distal extension. The housing may be positioned within a coronary sinus and the distal extension may be positioned within a vessel extending from the coronary sinus. The processing module may determine whether cardiac events occurred based on near-field signals and/or far-field signals sensed using the one or more electrodes supported by the housing and the distal electrode. The processing module may generate cardiac stimulation pulses based on the determination of whether a cardiac event occurred and where it occurred.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: July 21, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Lili Liu, Allan Charles Shuros
  • Patent number: 10709892
    Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: July 14, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
  • Patent number: 10675462
    Abstract: In one aspect, the present disclosure is directed to a method for identifying a site with a patient for treatment. The method may include engaging a plurality electrodes with an interior wall of the patient at a plurality of locations. The method may also generating a virtual map of a plurality of electrodes, wherein each of the plurality of electrodes is displayed with a first indicia. The method may also include displaying each of the plurality of electrodes engaged with the interior wall with a second indicia, measuring electrical activity, identifying at least one site for treatment based on the measured resulting electrical activity, and displaying each of the plurality of electrodes identified for treatment with a third indicia.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 9, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Ding Sheng He, Sandra Nagale, Allan Charles Shuros, Charles Gibson, Lynne Swanson, Dennis Werner, Timothy Paul Harrah, Mark Boden, Michael Charles Peterson, Steven Diamond, Amedeo Chiavetta
  • Patent number: 10639097
    Abstract: Extraction devices for extracting chronically implanted devices such as leadless cardiac pacemakers (LCP). In some cases, the extraction devices may be configured to cut, tear or ablate through at least some of the tissue ingrowth around and/or over the chronically implanted device such that a retrieval feature on the chronically implanted device may be grasped for removal of the chronically implanted device. Implantable medical devices such as LCPs may include features that facilitate their removal.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 5, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Arjun D. Sharma, Brian Soltis
  • Patent number: 10589101
    Abstract: Systems, methods, and devices for determining occurrences of a tamponade condition are disclosed. One exemplary method includes monitoring an accelerometer signal of a leadless cardiac pacemaker attached to a heart wall, determining if a tamponade condition of the patient's heart is indicated based at least in part on the monitored accelerometer signal, and in response to determining that the tamponade condition is indicated, providing a notification of the tamponade condition for use by a physician to take corrective action.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 17, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Patent number: 10549101
    Abstract: A system for use during revascularization includes a catheter having an adjustable balloon for delivery a stent, one or more pacing electrodes for delivering one or more pacing pulses to a patient's heart, and a pacemaker configured to generate the one or more pacing pulses to be delivered to the heart via the one or more pacing electrodes. The one or more pacing pulses are delivered at a rate substantially higher than the patient's intrinsic heart rate without being synchronized to the patient's intrinsic cardiac contractions, and are delivered before, during, or after an ischemic event to prevent or reduce cardiac injury.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: February 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Tamara Colette Baynham, Jihong Qu, Joseph M. Pastore, Andrew P. Kramer, Frits W. Prinzen, Ward Y. R. Vanagt, Richard N. Cornelussen
  • Publication number: 20190275329
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. A medical system includes an electrostimulation circuit to generate His-bundle pacing (HBP) pulses. A sensing circuit senses a physiologic signal, and detect a local His-bundle activation discrete from a pacing artifact of the HBP pulse. A control circuit verifies capture status in response to the HBP pulses. Based on the capture status, the control circuit determines one or more pacing thresholds including a selective HBP threshold representing a threshold strength to capture only the His bundle but not the local myocardium, and a non-selective HBP threshold representing a threshold strength to capture both the His bundle and the local myocardium. The electrostimulation circuit may deliver HBP pulses based on the selective and non-selective HBP thresholds.
    Type: Application
    Filed: January 24, 2019
    Publication date: September 12, 2019
    Inventors: Amy Jean Brisben, David J. Ternes, Allan Charles Shuros, Deepa Mahajan, David L. Perschbacher
  • Patent number: 10391317
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. In some embodiments, a method for pacing a patient's heart may include determining a posture of the patient and determining if the determined posture corresponds to a predetermined sleep posture. If the determined posture correspond to the predetermined sleep posture, the method may further comprise determining a respiration phase of the patient and pacing the patient's heart at a pacing rate that is modulated based on the determined respiration phase of the patient. If the determined posture does not correspond to the predetermined sleep posture, the method may pace the patient's heart at a pacing rate that is not dependent on the respiration phase of the patient.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 27, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Paul Huelskamp, Benjamin J. Haasl, Keith R. Maile