Patents by Inventor Allan Dunbar

Allan Dunbar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11403965
    Abstract: A system and method for quantitative validation of the quality of image-guided interventional procedures combine image data on the procedure with position tracking of the interventional instrument and calculate quantitative measures such as excursions of the interventional instrument from a desired position or track, procedure times and measurements of distances advanced and withdrawn. The quantitative metrics may be graphically displayed and stored. Metrics obtained for multiple users may be stored and statistically processed to derive measures of performance applicable to individuals or groups of clinicians.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 2, 2022
    Assignee: eZono AG
    Inventors: Allan Dunbar, Sungmo Lee
  • Patent number: 11311269
    Abstract: An ultrasound imaging system comprising an ultrasound scanner for acquiring a live ultrasound image of a portion of the anatomy of a patient being examined with the ultrasound imaging system, an assistance means for providing at least one primary demonstration video clip, and at least one video display. The video display is functionally connected with the ultrasound scanner and the assistance means in order to present the primary demonstration video clip simultaneously with a live ultrasound image.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: April 26, 2022
    Assignee: EZONO AG
    Inventors: Allan Dunbar, Sicco Schets, Fateh Mohammed, Hiba Arbash
  • Patent number: 10765343
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 8, 2020
    Assignee: eZono AG
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Patent number: 10758155
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 1, 2020
    Assignee: eZono AG
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Patent number: 10674935
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 9, 2020
    Assignee: EZONO AG
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Patent number: 10434278
    Abstract: A system for supplementing ultrasound image needle guidance with magnetically detected needle position and tissue impedance measurements. The system comprises an ultrasound imaging system with the ultrasound probe being provided with a magnetometric detector for detecting the position of a magnetized needle, cannula, catheter or other tissue-penetrating tool. The tissue penetrating tool is provided with an electrode at or near its tip which is connected to a power source and impedance meter, the impedance measuring circuit being completed by use of a skin electrode or second electrode on the tool so that the electrical impedance of the patient's tissue can be measured. The measured impedance values and the magnetically detected position of the tool are superimposed on the ultrasound image so that the clinician can easily confirm the needle position in relation to the imaged anatomy.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: October 8, 2019
    Assignee: EZONO AG
    Inventors: Allan Dunbar, Eliseo Sobrino
  • Publication number: 20190142362
    Abstract: An ultrasound imaging system comprising an ultrasound scanner for acquiring a live ultrasound image of a portion of the anatomy of a patient being examined with the ultrasound imaging system, an assistance means for providing at least one primary demonstration video clip, and at least one video display. The video display is functionally connected with the ultrasound scanner and the assistance means in order to present the primary demonstration video clip simultaneously with a live ultrasound image.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Applicant: EZONO AG
    Inventors: Allan DUNBAR, Sicco SCHETS, Fateh MOHAMMED, Hiba ARBASH
  • Publication number: 20180366035
    Abstract: A system and method for quantitative validation of the quality of image-guided interventional procedures combine image data on the procedure with position tracking of the interventional instrument and calculate quantitative measures such as excursions of the interventional instrument from a desired position or track, procedure times and measurements of distances advanced and withdrawn. The quantitative metrics may be graphically displayed and stored. Metrics obtained for multiple users may be stored and statistically processed to derive measures of performance applicable to individuals or groups of clinicians.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 20, 2018
    Inventors: Allan Dunbar, Sungmo Lee
  • Publication number: 20170079549
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Applicant: eZono AG
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Publication number: 20170079551
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Applicant: eZono AG
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Publication number: 20170079550
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Applicant: eZono AG
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Patent number: 9597008
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 21, 2017
    Assignee: EZONO AG
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Patent number: 9459087
    Abstract: In a magnetic position detection system designed to detect a target object in a detection space using an array of magnetic sensors, the position of the target object can be determined by fitting a model of the target object's magnetic field to the sensor measurements. A robust determination of whether a target object is present can be obtained by fitting the model to the sensor measurements and determining the remaining differences between the fitted model and the sensor measurements. If the differences are high then the model is not fitting well, suggesting that the target object is not present. If the differences are low, the model is fitting well and the target object can be determined as being present. Measurements made when the target object is determined as not being present can be regarded as background field measurements including any stray fields.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: October 4, 2016
    Assignee: EZONO AG
    Inventors: Allan Dunbar, Rolf Henkel
  • Publication number: 20150359991
    Abstract: A system for supplementing ultrasound image needle guidance with magnetically detected needle position and tissue impedance measurements. The system comprises an ultrasound imaging system with the ultrasound probe being provided with a magnetometric detector for detecting the position of a magnetised needle, cannula, catheter or other tissue-penetrating tool. The tissue penetrating tool is provided with an electrode at or near its tip which is connected to a power source and impedance meter, the impedance measuring circuit being completed by use of a skin electrode or second electrode on the tool so that the electrical impedance of the patient's tissue can be measured. The measured impedance values and the magnetically detected position of the tool are superimposed on the ultrasound image so that the clinician can easily confirm the needle position in relation to the imaged anatomy.
    Type: Application
    Filed: March 5, 2014
    Publication date: December 17, 2015
    Applicant: EZONO AG
    Inventors: Allan DUNBAR, Eliseo SOBRINO
  • Patent number: 9155517
    Abstract: An opto-electrical ultrasound sensor, preferably for the use in medical diagnostics, comprising at least one light source (2), a photo detector (3) illuminated by the light source (2) and capable of producing an electrical signal indicative of the intensity of the light incident on the photo detector (3), and an optical ultrasound detector (4) located in the optical path between the light source (2) and the photo detector (3) and capable of modulating in response to an ultrasound signal the intensity of at least part of the light incident on photo detector (3) from the light source (2). The opto-electrical ultrasound sensor further comprises intensity adjustment means (5) for adjusting the intensity of the light incident on the photo detector (3) via the optical ultrasound detector (4).
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: October 13, 2015
    Assignee: EZONO AG
    Inventors: Allan Dunbar, Eliseo Sobrino, Sicco Schets, Uwe Zeitner
  • Publication number: 20150080710
    Abstract: A method of obtaining information about the position and/or orientation of a magnetic component relatively to a magnetometric detector, the magnetic component and the magnetometric detector being moveable independently from each other relatively to a static secondary magnetic field, the method comprising the steps of: measuring in the presence of the combination of both the magnetic field of the magnetic component and the static secondary magnetic field essentially simultaneously the strength and/or orientation of a magnetic field at at least a first position and a second position spatially associated with the magnetometric detector, the second position being distanced from the first position; and combining the results of the measurements to computationally eliminate the effect of the secondary magnetic field and derive the information about the position and/or orientation of the magnetic component.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 19, 2015
    Inventors: Rolf Henkel, Eliseo Ventura Sobrino Patino, Robert Von Offenberg Sweeney, Allan Dunbar
  • Publication number: 20140257080
    Abstract: A system and method for ultrasound image guided surgical procedures such as needling or catheterisation, in which an ultrasound transducer is provided with a magnetometric detector for detecting the magnetic field emanating from a magnetised tissue-penetrating medical tool such as a needle or catheter. The detection of the magnetic field allows the position of the tool to be tracked magnetically and the position can be displayed on the ultrasound image. The position of the tool is determined from the magnetic field measurements by use of a look-up table of magnetic field values for the field emanating from the tissue-penetrating medical tool.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: eZono AG
    Inventors: Allan Dunbar, Eliseo Sobrino
  • Publication number: 20140257746
    Abstract: In a magnetic position detection system designed to detect a target object in a detection space using an array of magnetic sensors, the position of the target object can be determined by fitting a model of the target object's magnetic field to the sensor measurements. A robust determination of whether a target object is present can be obtained by fitting the model to the sensor measurements and determining the remaining differences between the fitted model and the sensor measurements. If the differences are high then the model is not fitting well, suggesting that the target object is not present. If the differences are low, the model is fitting well and the target object can be determined as being present. Measurements made when the target object is determined as not being present can be regarded as background field measurements including any stray fields.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: eZono AG
    Inventors: Allan DUNBAR, Rolf Henkel
  • Publication number: 20140257104
    Abstract: A system and method for assembling a 3D ultrasound image representation from multiple two-dimensional ultrasound images utilises a magnetic position detection system to detect the ultrasound probe position and allow mapping of the multiple two-dimensional ultrasound images into a three-dimensional frame of reference. The magnetic position detection system may use magnetic markers positioned on the subject or fixed in space around the subject. The position detection may use magnetic model fitting, look-up table, triangulation or distance measurement techniques to determine the position of the ultrasound probe relative to the magnetic markers. The ultrasound probe includes a magnetometric detector to detect the field generated by the magnetic markers.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: eZono AG
    Inventors: Allan DUNBAR, Eliseo Sobrino
  • Publication number: 20110196235
    Abstract: An ultrasound imaging system (1) comprising an ultrasound scanner (2) for acquiring a live ultrasound image (7) of a portion of the anatomy of a patient being examined with the ultrasound imaging system (1), an assistance means (9) for providing at least one primary demonstration video clip (27), and at least one video display (8). The video display (8) is functionally connected with the ultrasound scanner (2) and the assistance means (9) in order to present the primary demonstration video clip (27) simultaneously with a live ultrasound image (7).
    Type: Application
    Filed: April 22, 2008
    Publication date: August 11, 2011
    Inventors: Allan Dunbar, Siccd Schets, Fateh Mohammed, Hiba Arbash