Patents by Inventor Allan J. MacRae

Allan J. MacRae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230097541
    Abstract: High heat flux furnace cooler comprise CuNi pipe coils cast inside pours of high purity (99%-Wt) copper. The depth of front copper cover over the pipe coils in the hot face to manufacture into the casting is derived from a projection of the thermal and stress conditions existing at the cooler's end-of-campaign-life. CFD and/or FEA analyses and modeling is used for a trial-and-error zeroing in of the optimum geometries to employ in the original casting of CuNi pipe coils in high purity copper casting. Individual pipe coil positions to cast inside a copper casting mold are secured with devices that will not melt, cause thermal shear stresses, or be the source of contaminations or copper defects. Pipe bonding to the casting results because the differential coefficient of expansions of the pipes' and the casting's copper alloys involved do not exceed the yield strength of the casting copper during operational thermal cycling.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 30, 2023
    Inventor: Allan J. MacRae
  • Publication number: 20210324490
    Abstract: High heat flux furnace cooler comprise CuNi pipe coils cast inside pours of high purity (99%-Wt) copper. The depth of front copper cover over the pipe coils in the hot face to manufacture into the casting is derived from a projection of the thermal and stress conditions existing at the cooler's end-of-campaign-life. CFD and/or FEA analyses and modeling is used for a trial-and-error zeroing in of the optimum geometries to employ in the original casting of CuNi pipe coils in high purity copper casting. Individual pipe coil positions to cast inside a copper casting mold are secured with devices that will not melt, cause thermal shear stresses, or be the source of contaminations or copper defects. Pipe bonding to the casting results because the differential coefficient of expansions of the pipes' and the casting's copper alloys involved do not exceed the yield strength of the casting copper during operational thermal cycling.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 21, 2021
    Inventor: Allan J. MacRae
  • Patent number: 10982902
    Abstract: A stave cooler for a furnace that always includes a liquid coolant piping cast inside. A stave cooler body includes a hot face and a backside and a liquid coolant piping cast inside between the hot face and the backside. A single steel collar on the backside of each stave is engineered to support the entire weight of the stave cooler. Any and every external connection of the liquid coolant piping are collected and routed together through the single steel collar. These stave coolers are limited to those mountable only from the inside of steel containment shells provided with a matching penetration. The single steel collar and a cover plate accommodate and provide a gas-tight seal by a continuous welding of the single steel collar to each steel containment shell.
    Type: Grant
    Filed: July 11, 2020
    Date of Patent: April 20, 2021
    Assignee: MacRae Technologies, Inc.
    Inventor: Allan J. MacRae
  • Patent number: 10954574
    Abstract: A water pipe collection box and stave support for a cast copper stave cooler body panel that has disposed within it a circuit of water pipes with a number of loops each with an inlet end and an outlet end, and all such inlet ends and outlet ends clustered together in a single group that exits a backside of the copper stave cooler body panel. A cast copper stave cooler body panel that has disposed within a circuit of water pipes with a number of loops each with an inlet end and an outlet end, and all such inlet ends and outlet ends clustered together in a single group that exits a backside of the copper stave cooler body panel. A blast furnace having stave cooler body panels variously profiled to fit inside, and where each has disposed within it a circuit of water pipes with a number of loops each with an inlet end and an outlet end, and all such inlet ends and outlet ends are clustered together in a single group that exits a backside of each copper stave cooler body panel.
    Type: Grant
    Filed: March 3, 2019
    Date of Patent: March 23, 2021
    Inventors: Allan J. MacRae, Carlo Geronimi
  • Patent number: 10870898
    Abstract: All of a cast-iron or cast-copper stave cooler's weight is supported inside a furnace containment shell by a single gas-tight steel collar on its backside face. All the coolant piping in each cooler has every external fluid connection collected and routed together through the one steel collar. A wear protection barrier is disposed on the hot face. At least one of horizontal rows of ribs and channels retain metal inserts or refractory bricks, or pockets that assist in the retention of castable cement and/or accretions frozen in place from a melt, or an application of an area of hardfacing that is welded on in bead, crosshatch, or weave pattern.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: December 22, 2020
    Assignee: MACRAE TECHNOLOGIES, INC
    Inventor: Allan J. MacRae
  • Publication number: 20200348080
    Abstract: A stave cooler for a furnace that always includes a liquid coolant piping cast inside. A stave cooler body includes a hot face and a backside and a liquid coolant piping cast inside between the hot face and the backside. A single steel collar on the backside of each stave is engineered to support the entire weight of the stave cooler. Any and every external connection of the liquid coolant piping are collected and routed together through the single steel collar. These stave coolers are limited to those mountable only from the inside of steel containment shells provided with a matching penetration. The single steel collar and a cover plate accommodate and provide a gas-tight seal by a continuous welding of the single steel collar to each steel containment shell.
    Type: Application
    Filed: July 11, 2020
    Publication date: November 5, 2020
    Inventor: Allan J. MacRae
  • Patent number: 10684078
    Abstract: Computer modelling methods and foundry methods for copper-nickel coolant pipes cast-in-copper coolers are combined. First, Computational Fluid Dynamics and/or Finite Element Analysis steps verify geometric computer aided design models and materials choices, point-by-point heat distribution, and heat flows. And second, casting steps to commit an acceptable last thickness iteration of a thermal buffer part in simulation to casting it in a foundry. In the foundry, casting conditions are empirically developed to yield all but slight, unclustered bonding imperfections at a concentric diffusion interface of the pipes and surrounding solidified casting that improve the thermal conductivity of furnace-block coolers that incorporate coolant pipes. The combined methods verify in simulation that operational thermal stresses at the pipe-casting interface stay in-bounds of material stress limits, and that the peak temperatures on the hot face do not rise above 450° C.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 16, 2020
    Assignee: MacRae Technologies, Inc.
    Inventor: Allan J. MacRae
  • Publication number: 20200017744
    Abstract: An intrinsically safe pyrometallurgical furnace includes circulating a glycol dehydrating coolant. Substantially all the molecules of any initial weight of water it includes have been physically absorbed by a hygroscopic action into an initial weight of a glycol solvent. Substantially all the molecules of the initial weight of water included are suspended in solution between the molecules of a first portion of the initial weight of glycol solvent due to the hygroscopic action. A substantial remaining second portion of the initial weight of glycol solvent stays available to physically absorb any other water or steam that may later come in contact with the glycol dehydrating coolant as it circulates inside a desiccation containment vessel.
    Type: Application
    Filed: September 22, 2019
    Publication date: January 16, 2020
    Inventor: Allan J. MacRae
  • Patent number: 10533802
    Abstract: Many substantially identical refractory bricks are assembled into completed horizontal ring rows neatly nested into laterally curved copper stave coolers surrounding the ring. Each brick “locks” into horizontal channels between pairs of parallel horizontal protruding ribs on the hot faces of the stave coolers. Every stave cooler is provisioned with a full covering of the refractory bricks after the stave cooler is mounted inside a corresponding steel containment shell. None of the refractory bricks are permitted to be finished bridging between adjacent stave coolers in the same horizontal row. Each brick is installed in their respective stave coolers with crushable or deformable mortar filling the channels. Each brick hooks a “toe” just under and into an upper of the pair of horizontal ribs, and then rotates in down with favorably oriented and directed earth's gravity to stay in place at least until a next upper row of bricks in a superior horizontal ring “lock” them in a second way.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: January 14, 2020
    Assignee: MacRae Technologies, Inc.
    Inventor: Allan J. MacRae
  • Publication number: 20190367793
    Abstract: A coolant for use in support of a pyrometallurgical furnace includes a circulating rich glycol solution. Substantially all the molecules of any initial weight of water it includes have been physically absorbed by a hygroscopic action into an initial weight of a glycol solvent. Substantially all the molecules of the initial weight of water included are suspended in solution between the molecules of a first portion of the initial weight of glycol solvent due to the hygroscopic action. A substantial remaining second portion of the initial weight of glycol solvent stays available to physically absorb any other water or steam that may later come in contact with the rich glycol solution as it circulates inside a desiccation containment vessel.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 5, 2019
    Inventor: Allan J. MacRae
  • Publication number: 20190310018
    Abstract: Many substantially identical refractory bricks are assembled into completed horizontal ring rows neatly nested into laterally curved copper stave coolers surrounding the ring. Each brick “locks” into horizontal channels between pairs of parallel horizontal protruding ribs on the hot faces of the stave coolers. Every stave cooler is provisioned with a full covering of the refractory bricks after the stave cooler is mounted inside a corresponding steel containment shell. None of the refractory bricks are permitted to be finished bridging between adjacent stave coolers in the same horizontal row. Each brick is installed in their respective stave coolers with crushable or deformable mortar filling the channels. Each brick hooks a “toe” just under and into an upper of the pair of horizontal ribs, and then rotates in down with favorably oriented and directed earth's gravity to stay in place at least until a next upper row of bricks in a superior horizontal ring “lock” them in a second way.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 10, 2019
    Inventor: Allan J. MacRae
  • Publication number: 20190276906
    Abstract: High heat flux furnace cooler comprise CuNi pipe coils cast inside pours of high purity (99%-Wt) copper. The depth of front copper cover over the pipe coils in the hot face to manufacture into the casting is derived from a projection of the thermal and stress conditions existing at the cooler's end-of-campaign-life. CFD and/or FEA analyses and modeling is used for a trial-and-error zeroing in of the optimum geometries to employ in the original casting of CuNi pipe coils in high purity copper casting. Individual pipe coil positions to cast inside a copper casting mold are secured with devices that will not melt, cause thermal shear stresses, or be the source of contaminations or copper defects. Pipe bonding to the casting results because the differential coefficient of expansions of the pipes' and the casting's copper alloys involved do not exceed the yield strength of the casting copper during operational thermal cycling.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 12, 2019
    Inventor: Allan J. MacRae
  • Publication number: 20190271049
    Abstract: A water pipe collection box and stave support for a cast copper stave cooler body panel that has disposed within it a circuit of water pipes with a number of loops each with an inlet end and an outlet end, and all such inlet ends and outlet ends clustered together in a single group that exits a backside of the copper stave cooler body panel. A cast copper stave cooler body panel that has disposed within a circuit of water pipes with a number of loops each with an inlet end and an outlet end, and all such inlet ends and outlet ends clustered together in a single group that exits a backside of the copper stave cooler body panel. A blast furnace having stave cooler body panels variously profiled to fit inside, and where each has disposed within it a circuit of water pipes with a number of loops each with an inlet end and an outlet end, and all such inlet ends and outlet ends are clustered together in a single group that exits a backside of each copper stave cooler body panel.
    Type: Application
    Filed: March 3, 2019
    Publication date: September 5, 2019
    Inventors: Allan J. MacRae, Carlo Geronimi
  • Patent number: 10393438
    Abstract: At least one row of fixed copper coolers are arranged in a furnace in a cantilevered horizontal shelf inside and fastened to an external steel ring support and the steel containment shell. These shelves redirect and take all the weight of refractory brick and floating cooling blocks that are stacked on above. Each fixed copper cooler in the shelves cantilever shoulder-to-shoulder over any refractory brick and floating cooling blocks that may be stacked beneath to relieve that lower portion of the wall from the weight of the upper wall. When relieved of such weight, the risks of sudden catastrophic failure of the lower walls is reduced. These bricks in the lower walls can also be allowed to wear and thin beyond what would be reasonable in a conventional design without any cantilevered shelving.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: August 27, 2019
    Assignee: MacRae Technologies, Inc.
    Inventor: Allan J. MacRae
  • Publication number: 20190256936
    Abstract: All of a cast-iron or cast-copper stave cooler's weight is supported inside a furnace containment shell by a single gas-tight steel collar on its backside face. All the coolant piping in each cooler has every external fluid connection collected and routed together through the one steel collar. A wear protection barrier is disposed on the hot face. At least one of horizontal rows of ribs and channels retain metal inserts or refractory bricks, or pockets that assist in the retention of castable cement and/or accretions frozen in place from a melt, or an application of an area of hardfacing that is welded on in bead, crosshatch, or weave pattern.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 22, 2019
    Inventors: Allan J. MacRae, Todd G. Smith
  • Patent number: 10364475
    Abstract: All of a cast-iron or cast-copper stave cooler's weight is supported inside a furnace containment shell by single gas-tight steel collar on the backside. All the coolant piping in each cooler has every external connection collected and routed together through the one steel collar. A wear protection barrier is disposed on the hot face. Such is limited to include at least one of horizontal rows of ribs and channels that retain metal inserts or refractory bricks, or pockets that assist in the retention of castable cement and/or accretions frozen in place from a melt, or an application of an area of hardfacing that is welded on in bead, crosshatch, or weave pattern.
    Type: Grant
    Filed: August 11, 2018
    Date of Patent: July 30, 2019
    Assignee: MacRae Technologies, Inc.
    Inventor: Allan J. MacRae
  • Publication number: 20190170439
    Abstract: A plate cooler stave for use in a furnace having a shell wall, comprising: a top portion housing at least one cooling fluid inlet and at least one cooling fluid outlet for the flow of cooling fluid to and from the plate cooler stave from outside the furnace; and a main body disposed at an angle relative to the top portion so that the main body may be inserted into the furnace through an opening defined by the shell wall, wherein upon installation, at least a part of the top portion is disposed in the opening.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Inventors: Todd G. Smith, Allan J. MacRae
  • Publication number: 20190063839
    Abstract: At least one row of fixed copper coolers are arranged in a furnace in a cantilevered horizontal shelf inside and fastened to an external steel ring support and the steel containment shell. These shelves redirect and take all the weight of refractory brick and floating cooling blocks that are stacked on above. Each fixed copper cooler in the shelves cantilever shoulder-to-shoulder over any refractory brick and floating cooling blocks that may be stacked beneath to relieve that lower portion of the wall from the weight of the upper wall. When relieved of such weight, the risks of sudden catastrophic failure of the lower walls is reduced. These bricks in the lower walls can also be allowed to wear and thin beyond what would be reasonable in a conventional design without any cantilevered shelving.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventor: Allan J. MacRae
  • Publication number: 20180347002
    Abstract: All of a cast-iron or cast-copper stave cooler's weight is supported inside a furnace containment shell by single gas-tight steel collar on the backside. All the coolant piping in each cooler has every external connection collected and routed together through the one steel collar. A wear protection barrier is disposed on the hot face. Such is limited to include at least one of horizontal rows of ribs and channels that retain metal inserts or refractory bricks, or pockets that assist in the retention of castable cement and/or accretions frozen in place from a melt, or an application of an area of hardfacing that is welded on in bead, crosshatch, or weave pattern.
    Type: Application
    Filed: August 11, 2018
    Publication date: December 6, 2018
    Inventor: Allan J. MacRae
  • Publication number: 20180245171
    Abstract: A cooling system for use in support of a pyro-metallurgical furnace includes a liquid heat transfer fluid blend of 10%-50% water with monoethylene glycol (MEG), diethylene glycol (DEG), or triethylene glycol (TEG), and corrosion inhibitors. When using such glycols, a minimum of 10% water prevents the heat transfer fluid from becoming too viscous for economical pumping, and a maximum of 50% water prevents BLEVE incidents inside the furnace. Such intrinsically safe cooling system circulates the liquid heat transfer fluid blend with an optimally sized pump, filtration, pressurization, and at flow velocities sufficient to avoid film boiling.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Inventor: Allan J. MacRae