Patents by Inventor Allan Joseph Wenzel

Allan Joseph Wenzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9894810
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: February 13, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Publication number: 20160338229
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Application
    Filed: March 1, 2016
    Publication date: November 17, 2016
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Patent number: 9318919
    Abstract: A power distribution system among a set of units (e.g., server blocks) may comprise, for each unit, a utility line and a unit generator, and a reserve generator providing failover transient performance and redundancy improvement to the power for the unit generators. The reserve generator may connect to the units via a reserve bus, and the unit generators may selectively connect to a wraparound bus connected to the reserve bus. When the failover load exceeds the available failover transient capability of one generator, one or more unit generators may (automatically or by operator selection) be connected with the wraparound bus to apply available transient capability to satisfy the excess failover load with minimal increase in power distribution resources and complexity.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: April 19, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Scott Thomas Seaton, Allan Joseph Wenzel, Steven Ray Steinert, Courtney Shepherd Jones
  • Publication number: 20140167504
    Abstract: A parallel boost voltage power supply with local energy storage comprises a local energy storage and a local energy storage boost converter that boosts the voltage of the local energy storage and provides it to existing DC bulk storage circuitry. Diodes in series with the boost converter and an existing power factor correction boost converter enable the DC bulk storage circuitry to receive power from both the local energy storage and external power sources. Transition between local energy storage and external power sources is performed in a controlled manner to avoid overloading external power sources. Additionally, local energy storage devices are recharged from an existing isolation transformer circuit in the power supply if the power being drawn from external sources is below a threshold. Operation without external power is extended via communications with server computing devices resulting in decreased power consumption by deactivating components or throttling down processors.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: MICROSOFT CORPORATION
    Inventors: Shaun L. Harris, Brandon Aaron Rubenstein, Allan Joseph Wenzel
  • Publication number: 20130342012
    Abstract: A power distribution system among a set of units (e.g., server blocks) may comprise, for each unit, a utility line and a unit generator, and a reserve generator providing failover transient performance and redundancy improvement to the power for the unit generators. The reserve generator may connect to the units via a reserve bus, and the unit generators may selectively connect to a wraparound bus connected to the reserve bus. When the failover load exceeds the available failover transient capability of one generator, one or more unit generators may (automatically or by operator selection) be connected with the wraparound bus to apply available transient capability to satisfy the excess failover load with minimal increase in power distribution resources and complexity.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: Microsoft Corporation
    Inventors: Scott Thomas Seaton, Allan Joseph Wenzel, Steven Ray Steinert, Courtney Shepherd Jones
  • Publication number: 20120242151
    Abstract: Equipment in a data center may be wired in a topology in which each piece of equipment is served by one Static Transfer Switch (STS). Each group of equipment is assigned a main UPS and a reserve UPS, which may be connected to an underlying power source such as a utility. The main UPS and the reserve UPS are connected to the first and second inputs of an STS. For dual-corded equipment, the first cord is served by the output of the STS, while the second cord is served by the main UPS without an intervening STS. Thus, if the main UPS fails, the STS transfers power to the second UPS, thereby allowing the first cord to be powered. The second cord, not being served by the STS, simply loses power, thereby doubling the power draw at the first cord at roughly the same time that the transfer occurs.
    Type: Application
    Filed: June 23, 2011
    Publication date: September 27, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: Scott Thomas Seaton, Allan Joseph Wenzel
  • Publication number: 20120055012
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Application
    Filed: November 9, 2011
    Publication date: March 8, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Patent number: 8077457
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 13, 2011
    Assignee: Microsoft Corporation
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Publication number: 20100223085
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Applicant: Microsoft Corporation
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren