Patents by Inventor Allan Mark Fredholm

Allan Mark Fredholm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9643875
    Abstract: A fusion draw apparatus includes a pair of engagement rollers. At least one of the pair of engagement rollers includes a circumferential knife edge configured to cooperate with the other of the pair of engagement rollers to thin the edge portion or sever the edge portion from a central portion of the glass ribbon within the viscous zone of the glass ribbon. In further examples, fusion draw methods include the step of thinning the edge portion or severing the edge portion from the central portion of the glass ribbon within the viscous zone.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 9, 2017
    Assignee: Corning Incorporated
    Inventors: Pierre Brunello, Allan Mark Fredholm, Claude Francois Maurice Gille, Kamel Madi, Xavier Tellier
  • Patent number: 9643872
    Abstract: A roll forming apparatus includes at least one forming roll being spaced from a forming body to define a gap. The forming roll includes a working zone portion having a working zone surface with a length extending along a rotation axis of the forming roll and a thermal resistance boundary extending at an acute angle relative to the rotation axis. In further examples, methods include the step of feeding a stream of molten glass through the gap to form a glass ribbon including a formed thickness. The thermal resistance boundary facilitates substantial uniform radial expansion of the working zone surface relative to the rotation axis across the length of the working zone surface in response to heating of the working zone portion by the molten glass.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: May 9, 2017
    Assignee: Corning Incorporated
    Inventor: Allan Mark Fredholm
  • Patent number: 9580347
    Abstract: A glass forming system (200) and a method are described herein for forming a glass sheet (230). In one example, the glass forming system and method can use a glass composition with a liquidus viscosity less than 1000 poises to continuously form a glass sheet.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 28, 2017
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Allan Mark Fredholm, Laurent Joubaud
  • Patent number: 9458044
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt (300) from a molten core glass (106) and at least one molten cladding glass (126). The multi-layer glass melt (300) has a width Wm, a melt thickness Tm and a core to cladding thickness ratio TC:TCl. The multi-layer glass melt (300) is directed onto the surface of a molten metal bath (162) contained in a float tank (160). The width Wm of the multi-layer glass melt (300) is less than the width Wf of the float tank (160) prior to the multi-layer glass melt (300) entering the float tank (160). The multilayer glass melt (300) flows over the surface of the molten metal bath (162) such that the width Wm of the multi-layer glass melt (300) increases, the melt thickness Tm decreases, and the core to cladding thickness ratio TC:TCl remains constant as the multi-layer glass melt (300) solidifies into a laminated glass sheet. The invention also relates to the associated apparatus.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: October 4, 2016
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allan Mark Fredholm, Laurent Joubaud, Jean-Pierre Henri René Lereboullet, Xavier Tellier
  • Publication number: 20160221859
    Abstract: The present disclosure provides an apparatus and method for modifying the shape of a hollow structure. The method may comprise steps of providing a hollow structure having a cross-section with first and second diameters defining a first aspect ratio; heating at least a part of the hollow structure to at least its glass transition temperature, forming a malleable hollow structure; maintaining a positive pressure inside the malleable hollow structure to form a pressurized hollow structure; and pressing against a first side and an opposed second side of a heated part of the pressurized hollow structure, forming a hollow tabular structure having first and second opposed generally flat faces and a second aspect ratio greater than the first aspect ratio.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 4, 2016
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dominique Dejean, Allan Mark Fredholm, Laurent Joubaud
  • Publication number: 20160152503
    Abstract: A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Thierry Luc Alain Dannoux, Araund Dominique Dejean, Allan Mark Fredholm, Patrick Jean Pierre Herve, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Patent number: 9334187
    Abstract: A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: May 10, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Paul Louis Florent Delautre, Allan Mark Fredholm, Laurent Joubaud, Stephane Poissy
  • Patent number: 9284212
    Abstract: A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: March 15, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Allan Mark Fredholm, Patrick Jean Pierre Herve, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Publication number: 20150232365
    Abstract: A glass tube making apparatus comprises a forming device with a shaping member positioned within a downstream portion of an outer tube. In further examples, methods of making a glass tube include the steps of passing a quantity molten glass through an upstream portion of the outer tube, wherein the molten glass includes a first cross-sectional shape. The method further includes the step of passing the quantity of molten glass through a downstream portion of the outer tube, wherein the first cross-sectional shape is transitioned to a second cross-sectional shape. In still further examples, methods of making a glass tube include the step of modifying a cross-sectional shape of the glass tube with an air bearing.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 20, 2015
    Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Allan Mark Fredholm
  • Publication number: 20150191387
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt (300) from a molten core glass (106) and at least one molten cladding glass (126). The multi-layer glass melt (300) has a width Wm, a melt thickness Tm and a core to cladding thickness ratio TC:TCl. The multi-layer glass melt (300) is directed onto the surface of a molten metal bath (162) contained in a float tank (160). The width Wm of the multi-layer glass melt (300) is less than the width Wf of the float tank (160) prior to the multi-layer glass melt (300) entering the float tank (160). The multilayer glass melt (300) flows over the surface of the molten metal bath (162) such that the width Wm of the multi-layer glass melt (300) increases, the melt thickness Tm decreases, and the core to cladding thickness ratio TC:TCl remains constant as the multi-layer glass melt (300) solidifies into a laminated glass sheet. The invention also relates to the associated apparatus.
    Type: Application
    Filed: July 13, 2012
    Publication date: July 9, 2015
    Applicant: CORNING INCORPORATED
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allan Mark Fredholm, Laurent Joubaud, Jean-Pierre Lereboullet, Xavier Tellier
  • Patent number: 9073775
    Abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: July 7, 2015
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Allan Mark Fredholm, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Publication number: 20150099124
    Abstract: Glass-ceramics exhibiting a Vickers indentation crack initiation threshold of at least 15 kgf are disclosed. These glass-ceramics may be ion exchangeable or ion exchanged. The glass-ceramics include a crystalline and amorphous phases generated by subjecting a thin precursor glass article to ceramming cycle having an average cooling rate in the range from about 10° C./minute to about 25° C./minute. In one or more embodiments, the crystalline phase may comprise at least 20 wt % of the glass-ceramics. The glass-ceramics may include ?-spodumene ss as the predominant crystalline phase and may exhibit an opacity ?about 85% over the wavelength range of 400-700 nm for an about 0.8 mm thickness and colors an observer angle of 10° and a CIE illuminant F02 determined with specular reflectance included of a* between ?3 and +3, b* between ?6 and +6, and L* between 88 and 97.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventors: Lionel Joel Mary Beunet, Marie Jacqueline Monique Comte, Allan Mark Fredholm, Qiang Fu, Anne Paris, Sophie Peschiera, Charlene Marie Smith
  • Publication number: 20150099618
    Abstract: Embodiments of a method of forming a glass article are disclosed. The methods include supplying a glass ribbon in a first direction and redirecting the glass ribbon to a second direction different from the first direction without contacting the glass ribbon with a solid material. The glass ribbon may exhibit a viscosity of less than about 108 Poise and a thickness of about 1 mm or less. Embodiments of a glass or glass-ceramic forming apparatus are also disclosed. The apparatus may include a glass feed device for supplying a glass ribbon in a first direction and a redirection system disposed underneath the glass feed device for redirecting the glass ribbon to a second direction. In one or more embodiments, the redirection system comprising at least one gas bearing system for supplying a gas film to support the glass ribbon.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventors: Antoine Gaston Denis Bisson, Allan Mark Fredholm, Vincent Guillard
  • Publication number: 20150027169
    Abstract: A roll forming apparatus includes at least one forming roll being spaced from a forming body to define a gap. The forming roll includes a working zone portion having a working zone surface with a length extending along a rotation axis of the forming roll and a thermal resistance boundary extending at an acute angle relative to the rotation axis. In further examples, methods include the step of feeding a stream of molten glass through the gap to form a glass ribbon including a formed thickness. The thermal resistance boundary facilitates substantial uniform radial expansion of the working zone surface relative to the rotation axis across the length of the working zone surface in response to heating of the working zone portion by the molten glass.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 29, 2015
    Inventor: Allan Mark Fredholm
  • Publication number: 20140352360
    Abstract: A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Paul Louis Florent Delautre, Allan Mark Fredholm, Laurent Joubaud, Stephane Poissy
  • Patent number: 8869560
    Abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: October 28, 2014
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Allan Mark Fredholm, Laurent Joubaud, Sophie Peschiera, Stephane Poissy
  • Publication number: 20140283554
    Abstract: A glass manufacturing system and method are described herein for forming a high quality thin glass sheet. In one embodiment, the glass manufacturing system and method use at least one of a compensated rolling roll, a temperature controlled environment and edge rolls to form a high quality thin glass sheet that has a thickness less than about 2 mm and more preferably less than about 100 ?m.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Inventor: Allan Mark Fredholm
  • Patent number: 8833106
    Abstract: A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: September 16, 2014
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Arnaud Dejean, Paul Louis Florent Delautre, Allan Mark Fredholm, Laurent Joubaud, Stephane Poissy
  • Publication number: 20140216107
    Abstract: A fusion draw apparatus includes a pair of engagement rollers. At least one of the pair of engagement rollers includes a circumferential knife edge configured to cooperate with the other of the pair of engagement rollers to thin the edge portion or sever the edge portion from a central portion of the glass ribbon within the viscous zone of the glass ribbon. In further examples, fusion draw methods include the step of thinning the edge portion or severing the edge portion from the central portion of the glass ribbon within the viscous zone.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 7, 2014
    Inventors: Pierre Brunello, Allan Mark Fredholm, Claude Francois Maurice Gille, Kamel Madi, Xavier Tellier
  • Publication number: 20140144182
    Abstract: An apparatus and method for shaping a substantially planar glass substrate are disclosed. The glass substrate is supported on a shaping body having a substantially planar central portion and arcuate edge portions. The substrate is heated by a suitable radiant heat source wherein a thermal shield is used to shield a centrally located surface of the glass substrate so that only edge portions of the glass substrate are heated and softened. Gravity causes the glass substrate edge portions to sag and conform to the shape of the shaping body. In some embodiments, shaping members are pressed against the glass substrate edge portions to aid in the conforming. In certain other embodiments, a plurality of glass substrates are sequentially deformed by a shaping die.
    Type: Application
    Filed: August 30, 2011
    Publication date: May 29, 2014
    Inventors: Thierry Luc Alain Dannoux, Allan Mark Fredholm