Patents by Inventor Allan R. Schwartz
Allan R. Schwartz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11890111Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: GrantFiled: March 6, 2020Date of Patent: February 6, 2024Assignee: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Patent number: 11890112Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: GrantFiled: March 6, 2020Date of Patent: February 6, 2024Assignee: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Patent number: 11883203Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: GrantFiled: February 28, 2020Date of Patent: January 30, 2024Assignee: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Patent number: 10786155Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: GrantFiled: May 12, 2017Date of Patent: September 29, 2020Assignee: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Publication number: 20200214567Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: ApplicationFiled: March 6, 2020Publication date: July 9, 2020Applicant: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Publication number: 20200205663Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: ApplicationFiled: March 6, 2020Publication date: July 2, 2020Applicant: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Publication number: 20200196868Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: ApplicationFiled: February 28, 2020Publication date: June 25, 2020Applicant: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Publication number: 20170325685Abstract: A skull-mounted drug and pressure sensor (SOS), a smart pump (ISP) electrically coupled to the SOS and a drug delivery and communications catheter communicating the SOS with the ISP are combined for a first embodiment. A skull-mounted (SOS), a metronomic biofeedback pump (MBP) electrically coupled to the SOS and a drug delivery and communications catheter having a sending and receiving optical fiber communicating the SOS with the MBP are combined for a second embodiment. A third embodiment combines a (SOS), an implantable power and communication unit (PCU) electrically coupled to the SOS, and a drug delivery and communications catheter for communicating the SOS with the PCU and for communicating the exterior source of the drug to the SOS. A fourth embodiment combines a ventricular catheter with a CSF accessible chamber and drug delivery port; and an implantable stand-alone skull-mounted drug and pressure sensor (SPS).Type: ApplicationFiled: May 12, 2017Publication date: November 16, 2017Applicant: Cognos Therapeutics Inc.Inventors: Yehoshua Shachar, Thomas Chen, Thomas J. Lobl, Jeffrey A. Brydle, Juan R. Gonzalez, Virote Indravudh, Christian Merot, Allan R. Schwartz, Chad Srisathapat
-
Publication number: 20170182326Abstract: Disclosed herein is a disposable enclosure for use with a trial neurostimulation device configured to electrically couple with a neurostimulation lead for implant within a patient. The trial neurostimulation device includes a pulse generator portion. The disposable enclosure includes a first wall structure, a second wall structure opposite the first wall structure, a volume between the first and second wall structures, and a header. The volume is configured to receive therein the pulse generator portion. The header is configured to electrically couple with the neurostimulation lead. The header is supported in the disposable enclosure adjacent the volume and configured to electrically couple with the pulse generator portion when the pulse generator portion is located in the volume.Type: ApplicationFiled: March 9, 2017Publication date: June 29, 2017Inventors: Gene A. Bornzin, Jenner Joseph, Katie Hoberman, Zoltan Somogyi, Chris Condit, Heidi Hellman, Armando M. Cappa, Samir Shah, Geronimo Hernandez, Federico Gutierrez, Allan R. Schwartz
-
Publication number: 20160067502Abstract: Disclosed herein is a disposable enclosure for use with a trial neurostimulation device configured to electrically couple with a neurostimulation lead for implant within a patient. The trial neurostimulation device includes a pulse generator portion. The disposable enclosure includes a first wall structure, a second wall structure opposite the first wall structure, a volume between the first and second wall structures, and a header. The volume is configured to receive therein the pulse generator portion. The header is configured to electrically couple with the neurostimulation lead. The header is supported in the disposable enclosure adjacent the volume and configured to electrically couple with the pulse generator portion when the pulse generator portion is located in the volume.Type: ApplicationFiled: September 4, 2014Publication date: March 10, 2016Inventors: Gene A. Bornzin, Jenner Joseph, Katie Hoberman, Zoltan Somogyi, Chris Condit, Heidi Hellman, Armando M. Cappa, Samir Shah, Geronimo Hernandez, Federico Gutierrez, Allan R. Schwartz
-
Patent number: 9108065Abstract: Dynamically switching between different external RF transceivers for communication with an implantable medical device maintains high communication quality in the face of interference, fading, detuning, or other adverse wireless communication conditions. Quality information associated with communications between an implantable medical device and different external devices is monitored to select one of these external devices to conduct subsequent communication with the implantable medical device. This monitoring is conducted on a repeated basis such that communication is switched to a different RF transceiver whenever such an RF transceiver is able to achieve a higher quality communication than the currently selected RF transceiver. In some embodiments, RF transceivers are deployed in different devices. For example, one or more RF transceivers may be deployed at a portable programmer (e.g., in the form of a computer tablet) and one or more other RF transceivers may be deployed at an associated base station.Type: GrantFiled: September 27, 2011Date of Patent: August 18, 2015Assignee: PACESETTER, INC.Inventors: Nishant Srivastava, Allan R. Schwartz, Curtis A. Knight
-
Patent number: 8527060Abstract: Disclosed herein is a shield for shielding a telemetry wand from electromagnetical interference capable of interfering with telemetry communications between the telemetry wand and an AIMD in a patient. The telemetry wand may include a first side that is configured to be placed against a patient, a second side generally opposite the first side, a lateral side between the first and second sides, a hole extending between the first and second sides, and a cable extending from the lateral side. The shield may include a shell including a wall that defines a volume and an opening in the shell. The volume may be configured to receive therein the telemetry wand such that the second and lateral sides of the telemetry wand face respective portions of the wall and the first side faces the opening in the shell.Type: GrantFiled: November 23, 2011Date of Patent: September 3, 2013Assignee: Pacesetter, Inc.Inventors: Jorge N. Amely-Velez, Armando M. Cappa, J. Terry Benson, Robel Borja, Allan R. Schwartz, Anthony Li
-
Publication number: 20130131759Abstract: Disclosed herein is a shield for shielding a telemetry wand from electromagnetical interference capable of interfering with telemetry communications between the telemetry wand and an AIMD in a patient. The telemetry wand may include a first side that is configured to be placed against a patient, a second side generally opposite the first side, a lateral side between the first and second sides, a hole extending between the first and second sides, and a cable extending from the lateral side. The shield may include a shell including a wall that defines a volume and an opening in the shell. The volume may be configured to receive therein the telemetry wand such that the second and lateral sides of the telemetry wand face respective portions of the wall and the first side faces the opening in the shell.Type: ApplicationFiled: November 23, 2011Publication date: May 23, 2013Applicant: PACESETTER, INC.Inventors: Jorge N. Amely-Velez, Armando M. Cappa, J. Terry Benson, Robel Borja, Allan R. Schwartz, Anthony Li
-
Publication number: 20130079836Abstract: Dynamically switching between different external RF transceivers for communication with an implantable medical device maintains high communication quality in the face of interference, fading, detuning, or other adverse wireless communication conditions. Quality information associated with communications between an implantable medical device and different external devices is monitored to select one,of these external devices to conduct subsequent communication with the implantable medical device. This monitoring is conducted on a repeated basis such that communication is switched to a different RF transceiver whenever such an RF transceiver is able to achieve a higher quality communication than the currently selected RF transceiver. In some embodiments, RF transceivers are deployed in different devices. For example, one or more RF transceivers may be deployed at a portable programmer (e.g., in the form of a computer tablet) and one or more other RF transceivers may be deployed at an associated base station.Type: ApplicationFiled: September 27, 2011Publication date: March 28, 2013Applicant: PACESETTER, INC.Inventors: Nishant Srivastava, Allan R. Schwartz, Curtis A. Knight
-
Patent number: 8060212Abstract: Exemplary external medical devices are configurable to communicate with an implantable medical device (IMD). One medical device includes multiple IMD telemetry ports operable to connect IMD telemetry mechanisms to the medical device. The medical device also includes a control unit configured to control the IMD telemetry mechanisms.Type: GrantFiled: April 17, 2007Date of Patent: November 15, 2011Assignee: Pacesetter, Inc.Inventors: Ronald R. Rios, Gregory C. Bevan, Eliot L. Ostrow, Armando M. Cappa, Allan R. Schwartz, George L. Walls
-
Patent number: 7580755Abstract: A method for connecting to a remote unit via a communications medium, determining a data transfer rate of the connection, setting a sampling rate between the remote unit and an implantable medical device at least in part as a function of the determined data transfer rate and receiving real time data from the remote unit via said communications medium.Type: GrantFiled: November 18, 2005Date of Patent: August 25, 2009Assignee: Pacesetter, Inc.Inventors: Allan R. Schwartz, Leonard Mah
-
Patent number: 7555348Abstract: Patients fitted with an implantable medical device (IMD) must typically return to their medical providers for follow-up sessions where the medical provider retrieves data from the patient's IMD for analysis. A remote monitoring device is described to allow patients to complete a follow-up session from the comfort of their own home or from some other remote location. Specifically, a user interface employing various audio signals, light indicators, and tactile features is described to aid patients with hearing and/or visual disabilities during the remote follow-up session. Different light indicator states are used to aid hearing impaired patients. Different audio sound states are used to aid visually impaired patients. Furthermore, tactile features are used to aid hearing and/or visually impaired patients.Type: GrantFiled: October 3, 2005Date of Patent: June 30, 2009Assignee: Pacesetter, Inc.Inventors: Allan R. Schwartz, Monique Prue
-
Patent number: 6842643Abstract: An external programmer is provided with the capability of automatically resetting the programming state of an implantable medical device to a previous programming state. To this end, the pacemaker maintains parameters representative of current and past programming states. In response to a physician-initiated reset function using an external programmer, the pacemaker transfers information pertaining to the programming states to the external programmer along with a pointer identifying the current state. The physician selects one of the previous programming states and the external programmer then updates the pointer to identify the selected state and transmits the pointer back to the pacemaker. The pacemaker accesses the programming parameters stored therein corresponding to the programming state identified by the new pointer and is reprogrammed. Accordingly, the programming state of the pacemaker is reset to the previous programming state without requiring manual reentry of the parameters.Type: GrantFiled: January 16, 2002Date of Patent: January 11, 2005Assignee: Pacesetter, Inc.Inventors: Allan R. Schwartz, David W. Adinolfi, Hakan Hornell, Kelly H. McClure, Brian M. Mann
-
Patent number: 6687544Abstract: A system and method for identifying and displaying safety alert advisories. The system of the present invention automatically performs a comparison of identification data with a safety alert advisory. The system stores identification data in a plurality of dedicated fields. Each of the dedicated fields contains information related to the patient. Upon the telemetric retrieval of the data by an external programmer, the external programmer automatically cross-correlates the data in the dedicated fields with the safety alert advisories. Upon identification of a match between the data and one of the safety alert advisories, the identified safety alert advisory is displayed to a medical practitioner. In addition, the system provides a dedicated memory to store an advisory flag. The advisory flag is marked when the programmer identifies a safety alert condition that is relevant to one of the dedicated fields.Type: GrantFiled: October 2, 2001Date of Patent: February 3, 2004Assignee: Pacesetter, Inc.Inventors: Paul A. Levine, Bruce L. Wilkoff, Brian M. Mann, Allan R. Schwartz
-
Patent number: 6327501Abstract: A system and method for identifying and displaying safety alert advisories. The system automatically performs a comparison of identification data with a safety alert advisory. The system stores identification data in a plurality of dedicated fields. Each of dedicated fields contains information related to the patient. Upon the telemetric retrieval of the data by an external programmer, the external programmer automatically cross-correlates the data in the dedicated fields with the safety alert advisories. Upon identification of a match between the data and one of the safety alert advisories, the identified safety alert advisory is displayed to a medical practitioner. In addition, the system provides a dedicated memory to store an advisory flag. The advisory flag is marked when the programmer identifies a safety alert condition that is relevant to one of the dedicated fields.Type: GrantFiled: November 2, 1999Date of Patent: December 4, 2001Assignee: Pacesetter, Inc.Inventors: Paul A. Levine, Bruce L. Wilkoff, Brian M. Mann, Allan R. Schwartz