Patents by Inventor Allan W. Upham

Allan W. Upham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9331073
    Abstract: A method of forming a quantum well having a conformal epitaxial well on a {100} crystallographic orientated fin. The method may include: forming fins in a {100} crystallographic oriented substrate; forming a conformal well on the fins using epitaxial growth; and forming a conformal barrier on the conformal well using epitaxial growth.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: May 3, 2016
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, James J. Demarest, Hong He, Seth L. Knupp, Raghavasimhan Sreenivasan, Sean Teehan, Allan W. Upham, Chih-Chao Yang
  • Patent number: 9318347
    Abstract: A method of particle mitigation which includes obtaining a semiconductor wafer having a nonfunctional backside and a functional frontside on which semiconductor devices are formed by one or more lithography processes; coating the backside with a layer comprising silicon or amorphous carbon; planarizing the coated backside by a planarizing process; placing the semiconductor wafer onto a wafer chuck such that the wafer chuck makes direct contact with the coated backside; and while maintaining the coated backside in direct contact with the wafer chuck, performing a first lithographic process on the frontside.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: April 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, James J. Demarest, Alex R. Hubbard, Richard Johnson, Ryan O. Jung, James J. Kelly, Sanjay C. Mehta, Alexander Reznicek, Allan W. Upham
  • Publication number: 20160093697
    Abstract: A finFET with a quantum well having a conformal epitaxial well on a {100} crystallographic orientated fin. The structure may include a fin having a {100} crystallographic orientation; a conformal well covering the fin; and a conformal barrier covering the conformal well.
    Type: Application
    Filed: October 5, 2015
    Publication date: March 31, 2016
    Inventors: Marc A. Bergendahl, James J. Demarest, Hong He, Seth L. Knupp, Raghavasimhan Sreenivasan, Sean Teehan, Allan W. Upham, Chih-Chao Yang
  • Publication number: 20160093613
    Abstract: A method of forming a quantum well having a conformal epitaxial well on a {100} crystallographic orientated fin. The method may include: forming fins in a {100} crystallographic oriented substrate; forming a conformal well on the fins using epitaxial growth; and forming a conformal barrier on the conformal well using epitaxial growth.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 31, 2016
    Inventors: Marc A. Bergendahl, James J. Demarest, Hong He, Seth L. Knupp, Raghavasimhan Sreenivasan, Sean Teehan, Allan W. Upham, Chih-Chao Yang
  • Publication number: 20160049311
    Abstract: A method of particle mitigation which includes obtaining a semiconductor wafer having a nonfunctional backside and a functional frontside on which semiconductor devices are formed by one or more lithography processes; coating the backside with a layer comprising silicon or amorphous carbon; planarizing the coated backside by a planarizing process; placing the semiconductor wafer onto a wafer chuck such that the wafer chuck makes direct contact with the coated backside; and while maintaining the coated backside in direct contact with the wafer chuck, performing a first lithographic process on the frontside.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 18, 2016
    Inventors: Marc A. Bergendahl, James J. Demarest, Alex R. Hubbard, Richard Johnson, Ryan O. Jung, James J. Kelly, Sanjay C. Mehta, Alexander Reznicek, Allan W. Upham
  • Patent number: 9184042
    Abstract: A method of particle mitigation which includes obtaining a semiconductor wafer having a nonfunctional backside and a functional frontside on which semiconductor devices are formed by one or more lithography processes; coating the backside with a mitigating layer comprising silicon or amorphous carbon; patterning the mitigating layer to form indentations in the mitigating layer; placing the semiconductor wafer onto a wafer chuck such that the wafer chuck makes direct contact with the coated and patterned backside mitigating layer; and while maintaining the coated and patterned backside mitigating layer in direct contact with the wafer chuck, performing a first lithographic process on the frontside.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: November 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, James J. Demarest, Alex R. Hubbard, Richard Johnson, Ryan O. Jung, James J. Kelly, Sanjay C. Mehta, Alexander Reznicek, Allan W. Upham
  • Patent number: 7030031
    Abstract: This invention relates to the manufacture of dual damascene interconnect structures in integrated circuit devices. Specifically, a method is disclosed for forming a single or dual damascene structure in a low-k dielectric thin film utilizing a planarizing material and a diffusion barrier material. In a preferred dual damascene embodiment of this method, the vias are formed first in the dielectric material, then the planarizing material is deposited in the vias and on the dielectric material, and the barrier material is deposited on the planarizing material. The trenches are then formed lithographically in the imaging material, etched through the barrier material into the planarizing material, and the trench pattern is transferred to the dielectric material. During and following the course of these etch steps, the imaging, barrier and planarizing materials are removed. The resultant dual damascene structure may then be metallized.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: April 18, 2006
    Assignee: International Business Machines Corporation
    Inventors: William C. Wille, Daniel C. Edelstein, William J. Cote, Peter E. Biolsi, John Fritche, Allan W. Upham
  • Publication number: 20040266201
    Abstract: This invention relates to the manufacture of dual damascene interconnect structures in integrated circuit devices. Specifically, a method is disclosed for forming a single or dual damascene structure in a low-k dielectric thin film utilizing a planarizing material and a diffusion barrier material. In a preferred dual damascene embodiment of this method, the vias are formed first in the dielectric material, then the planarizing material is deposited in the vias and on the dielectric material, and the barrier material is deposited on the planarizing material. The trenches are then formed lithographically in the imaging material, etched through the barrier material into the planarizing material, and the trench pattern is transferred to the dielectric material. During and following the course of these etch steps, the imaging, barrier and planarizing materials are removed. The resultant dual damascene structure may then be metallized.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William C. Wille, Daniel C. Edelstein, William J. Cote, Peter E. Biolsi, John E. Fritche, Allan W. Upham