Patents by Inventor Allen A. Sweet

Allen A. Sweet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240003042
    Abstract: A MOD YIG epitaxial process for fabricating YIG nanofilms which, when deposited on GGG substrates, have single crystal epitaxial properties. The films may have thicknesses of 50 nm for a single layer, 100 nm for two layers, and 130 nm for three layers, and have a gyromagnetic ratio of 2.80 MHz per Oe, Gilbert damping ranges from 0.0003 to 0.001, 4?M$ values between 1650 G to 1780 G, coercivity from 1 Oe. to 5 Oe, and surface roughness of RMS 0.20 nm for up to 10 layers. Fabrication is economical and uses only a spinner, a drying station (RT to 150 C temperature control), and a quartz tube furnace that accommodates a flowing atmosphere of research grade oxygen, thereby eliminating the need for high vacuum deposition chambers.
    Type: Application
    Filed: August 31, 2021
    Publication date: January 4, 2024
    Applicant: Vida Products
    Inventors: Allen Sweet, Szu-Fan Wang, Kai Chorazewicz
  • Patent number: 10601370
    Abstract: A low loss unidirectional conductive sheet using magnetic field biasing and electron spin precession for coupling RF power to ferrite resonators, comprising the step of placing a plurality of ferrite resonators in a bias magnetic field to excite the electron spins of the materials of said ferrite resonators into precession.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: March 24, 2020
    Assignee: Vida Products
    Inventors: Ronald A. Parrott, Allen A. Sweet
  • Publication number: 20180006603
    Abstract: A low loss unidirectional conductive sheet using magnetic field biasing and electron spin precession for coupling RF power to ferrite resonators, comprising the step of placing a plurality of ferrite resonators in a bias magnetic field to excite the electron spins of the materials of said ferrite resonators into precession.
    Type: Application
    Filed: December 17, 2015
    Publication date: January 4, 2018
    Inventors: Ronald A. Parrott, Allen A. Sweet
  • Patent number: 8350629
    Abstract: A differential resonant ring oscillator (“DRRO*) circuit using a ring oscillator topology to electronically tune the oscillator over multi-octave bandwidths. The oscillator tuning is substantially linear, because the oscillator frequency is related to the magnetic tuning of a YIG sphere, which has a resonant frequency equal to a fundamental constant multiplied by the DC magnetic field. The simple circuit topology uses half turn or multiple half turn loops magnetic coupling methods connecting a differential pair of amplifiers into a feedback loop configuration having a four port YIG tuned filter, thus creating a closed loop ring oscillator. The oscillator may use SiGe bipolar junction transistor technology and amplifiers employing heterojunction bipolar transistor technology SiGe is the preferred transitor material as it keeps the transistor's 1/f noise to an absolute minimum in order to achieve minimum RF phase noise.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 8, 2013
    Inventors: Ronald A. Parrott, Allen A. Sweet
  • Publication number: 20110148532
    Abstract: A differential resonant ring oscillator (“DRRO*) circuit using a ring oscillator topology to electronically tune the oscillator over multi-octave bandwidths. The oscillator tuning is substantially linear, because the oscillator frequency is related to the magnetic tuning of a YIG sphere, which has a resonant frequency equal to a fundamental constant multiplied by the DC magnetic field. The simple circuit topology uses half turn or multiple half turn loops magnetic coupling methods connecting a differential pair of amplifiers into a feedback loop configuration having a four port YIG tuned filter, thus creating a closed loop ring oscillator. The oscillator may use SiGe bipolar junction transistor technology and amplifiers employing heterojunction bipolar transistor technology SiGe is the preferred transitor material as it keeps the transistor's 1/f noise to an absolute minimum in order to achieve minimum RF phase noise.
    Type: Application
    Filed: August 20, 2009
    Publication date: June 23, 2011
    Inventors: Ronald A. Parrott, Allen A. Sweet
  • Patent number: 5837909
    Abstract: A hollow shaft torque measurement and telemetry system is provided for race cars. The system provides information on the torque delivered to each drive wheel of a race car while the race car is in motion. That information is valuable in attempting to maximize the speed during a race. The system operates under the high vibrations and temperature levels typical of a race car. A set of strain gauges, a transmitter, and batteries are installed inside one of the hollow shafts connected to a race car's drive wheels. The batteries provide power for the system. The strain gauges are mounted in an electrical bridge configuration so that they provide an electrical indication of torsion only. The strain gauges are connected to the transmitter. The transmitter converts that electrical indication of torsion to an FM radio signal, and has an automatic calibration circuit. The transmitter is connected to a rotating antenna over-wrapped with glass epoxy on the outside of the shaft.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: November 17, 1998
    Assignee: Wireless Data Corporation
    Inventors: Stephen L. Bill, Wayne A. Pittman, David P. Swartz, Allen A. Sweet