Patents by Inventor Allen JIANG

Allen JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11819636
    Abstract: An endoscopic system includes an elongate shaft, a pull wire that runs a length of the elongate shaft, a handle coupled to a proximal portion of the elongate shaft, the handle housing a proximal portion of the pull wire, the handle being couplable to a robotic driver configured to tension the pull wire to cause articulation of the elongate shaft, and one or more conductors that run the length of the elongate shaft, the one or more conductors being electrically coupled to the pull wire at a distal portion of the elongate shaft and configured to form part of a closed electrical circuit with the pull wire.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: November 21, 2023
    Assignee: Auris Health, Inc.
    Inventor: Allen Jiang
  • Patent number: 11801105
    Abstract: Certain aspects relate to systems, methods, and techniques for correcting for uncommanded instrument roll. A method for adjusting a controller-feedback system in a medical instrument may comprise receiving data from a sensor at or near a distal end of the instrument, determining a tip frame of reference based on the data from the sensor, the tip frame of reference representing a current orientation of the distal end of the instrument, obtaining a desired frame of reference, determining an adjustment to a visual frame of reference or a control frame of reference based on the tip frame of reference and the desired frame of reference, and transforming the visual frame of reference or the control frame of reference.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: October 31, 2023
    Assignee: Auris Health, Inc.
    Inventors: Ritwik Ummalaneni, Allen Jiang
  • Publication number: 20230321230
    Abstract: Provided herein are, in various embodiments, methods and compositions comprising polynucleotides (e.g., mRNA) for eliciting an immune response. In certain embodiments, the disclosure provides for methods and compositions for enhancing efficacy of infectious disease treatment (e.g., mRNA vaccines). In still further embodiments, the disclosure provides methods and compositions for enhancing one or more vaccines, such as SARS-CoV-2 mRNA vaccines.
    Type: Application
    Filed: March 24, 2023
    Publication date: October 12, 2023
    Inventors: Bowen Li, Allen Jiang, Robert S. Langer, Daniel G. Anderson
  • Patent number: 11723730
    Abstract: The disclosed technology includes improved microsurgical tools providing multiple degrees of freedom at the wrist level, including roll, pitch, and grasp DOFs, a tight articulation bending radius, low radial offset, and improved stiffness. Some implementations include an end effector platform moveable along a fixed trajectory on a fictional axle so as not to interfere with a central-axis aligned working channel; a crossed-arm mechanical linkage for articulating an end-effector platform throughout a pitch DOF with an amplified pitch angle; and a partial pulley system to articulate the arms while maximizing pulley radius to shaft diameter, and permitting a constant transmission efficiency to the arms throughout the range of articulation. In some implementations, a tool shaft outer diameter may be smaller than 3 mm; a pitch DOF range may be ±90°, a roll DOF range may be ±180°, and a grasp DOF range may be 30°.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 15, 2023
    Assignee: Auris Health, Inc.
    Inventors: Loic Alexandre Bovay, Travis Schuh, Fernando Reyes, Allen Jiang
  • Patent number: 11712149
    Abstract: An endoscopy system that includes a computer system with a high definition display monitor and a handheld portion. The handheld portion includes a re-usable handle portion and a single use portion that is configured to be disposed of following a single use. The single-use portion includes an elongated cannula with an imaging module and illumination modules at its distal tip. The handheld portion includes multiple sensors that can detect and measure rotation of the cannula relative to the handle portion, and rotation of the entire handheld portion. The sensor data is used to correctly orient and display images captured by the imaging module onto the high definition display monitor.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: August 1, 2023
    Assignee: SUZHOU ACUVU MEDICAL TECHNOLOGY CO, LTD.
    Inventors: Fred Lu, Jian Zhang, Allen Jiang
  • Publication number: 20230183168
    Abstract: Provided herein are compounds, such as compounds of Formula (I), and pharmaceutically acceptable salts, hydrates, solvates, polymorphs, co-crystals, tautomers, stereoisomers, and isotopically labeled derivatives thereof, and compositions, methods, uses, and kits thereof. The compounds provided herein are lipids useful for delivery of polynucleotides, such as mRNA, for the treatment and/or prevention of various diseases and conditions (e.g., genetic disease, proliferative disease, hematological disease, neurological disease, liver disease, spleen disease, lung disease, painful condition, psychiatric disorder, musculoskeletal disease, a metabolic disorder, inflammatory disease, or autoimmune disease).
    Type: Application
    Filed: December 13, 2022
    Publication date: June 15, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel Griffith Anderson, Luke Hyunsik Rhym, Allen Jiang, Jacob Witten, Idris Raji
  • Publication number: 20230117715
    Abstract: Certain aspects relate to systems and techniques for surgical robotic arm setup. In one aspect, there is provided a system including a first robotic arm configured to manipulate a medical instrument, a processor, and a memory. The processor may be configured to: determine a minimum stroke length of the first robotic arm that allows advancing of the medical instrument by the first robotic arm to reach a target region from an access point via a path, determine a boundary for an initial pose of the first robotic arm based on the minimum stroke length and a mapping stored in the memory, and during an arm setup phase prior to performing a procedure, provide an indication of the boundary during movement of the first robotic arm.
    Type: Application
    Filed: October 10, 2022
    Publication date: April 20, 2023
    Applicant: Auris Health, Inc.
    Inventors: Mingyen Ho, David Paul Noonan, Shu-Yun Chung, Allen Jiang
  • Publication number: 20230107870
    Abstract: A robotic system includes control circuitry configured to cause actuation of one or more actuators of each of a first robotic arm and a second robotic arm. The control circuitry is configured to determine a position of a first end effector of the first robotic arm and a position of a second end effector of the second robotic arm, the positions of the first end effector and the second end effector forming a virtual rail, receive manual positioning input for the first robotic arm based at least in part on sensor signals from one or more sensors of the first robotic arm, and in response to the manual positioning input, generate a first movement command to move the first robotic arm in accordance with the manual positioning input and generate a second movement command to move the second robotic arm in a manner as to maintain at least one of a position or orientation of the second end effector relative to a point on the virtual rail.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Inventors: Enrique Romo, Frederic H. Moll, David S. Mintz, Mark Lown, Siddharth Oli, Allen Jiang
  • Publication number: 20230065020
    Abstract: An endoscopic system includes an elongate shaft, a pull wire that runs a length of the elongate shaft, a handle coupled to a proximal portion of the elongate shaft, the handle housing a proximal portion of the pull wire, the handle being couplable to a robotic driver configured to tension the pull wire to cause articulation of the elongate shaft, and one or more conductors that run the length of the elongate shaft, the one or more conductors being electrically coupled to the pull wire at a distal portion of the elongate shaft and configured to form part of a closed electrical circuit with the pull wire.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 2, 2023
    Inventor: Allen JIANG
  • Patent number: 11534250
    Abstract: Systems and methods for moving or manipulating robotic arms are provided. A group of robotic arms are configured to form a virtual rail or line between the end effectors of the robotic arms. The robotic arms are responsive to outside force such as from a user. When a user moves a single one of the robotic arms, the other robotic arms will automatically move to maintain the virtual rail alignments. The virtual rail of the robotic arm end effectors may be translated in one or more of three dimensions. The virtual rail may be rotated about a point on the virtual rail line. The robotic arms can detect the nature of the contact from the user and move accordingly. Holding, shaking, tapping, pushing, pulling, and rotating different parts of the robotic arm elicits different movement responses from different parts of the robotic arm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: December 27, 2022
    Assignee: Auris Health, Inc.
    Inventors: Enrique Romo, Frederic H. Moll, David S. Mintz, Mark Lown, Siddharth Oli, Allen Jiang
  • Patent number: 11511079
    Abstract: Methods and apparatuses for detecting tension on a tendon and/or mechanical deformation (e.g., breakage) of one or more steering tendon of a steerable and flexible articulating device. Theses apparatuses may have one or more tendons that are each electrically conductive and configured to steer the apparatus when tension is applied to the proximal end of the tendon. Tension and/or breakage (or other deformation) of one or more of these tendons may be detected by monitoring the electrical resistance of the tendons.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 29, 2022
    Assignee: Auris Health, Inc.
    Inventor: Allen Jiang
  • Patent number: 11472030
    Abstract: Certain aspects relate to systems and techniques for surgical robotic arm setup. In one aspect, there is provided a system including a first robotic arm configured to manipulate a medical instrument, a processor, and a memory. The processor may be configured to: determine a minimum stroke length of the first robotic arm that allows advancing of the medical instrument by the first robotic arm to reach a target region from an access point via a path, determine a boundary for an initial pose of the first robotic arm based on the minimum stroke length and a mapping stored in the memory, and during an arm setup phase prior to performing a procedure, provide an indication of the boundary during movement of the first robotic arm.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: October 18, 2022
    Assignee: Auris Health, Inc.
    Inventors: Mingyen Ho, David Paul Noonan, Shu-Yun Chung, Allen Jiang
  • Publication number: 20210153956
    Abstract: A patient introducer for use with a surgical robotic system is disclosed. In one aspect, the patient introducer may include an introducer tube extending between (i) a distal end connectable to a port and (ii) a proximal end configured to receive a surgical tool. The introducer tube may be configured to guide the surgical tool into the port. The patient introducer may also include an alignment member connected to the introducer tube and including a first shape and a first alignment marking. The alignment member may be configured to interface with a manipulator assembly of a robotic system. The manipulator assembly may include a second shape and a second alignment marking, the first shape being complementary to the second shape. The first alignment marking of the alignment member may facilitate rotational alignment of the alignment member and the manipulator assembly.
    Type: Application
    Filed: February 4, 2021
    Publication date: May 27, 2021
    Inventors: Jeffrey William Draper, Sergio L. Martinez, JR., Ryan Jeffrey Connolly, Allen Jiang, David Paul Noonan, Douglas Bruce Dull
  • Publication number: 20210137621
    Abstract: Certain aspects relate to systems, methods, and techniques for correcting for uncommanded instrument roll. A method for adjusting a controller-feedback system in a medical instrument may comprise receiving data from a sensor at or near a distal end of the instrument, determining a tip frame of reference based on the data from the sensor, the tip frame of reference representing a current orientation of the distal end of the instrument, obtaining a desired frame of reference, determining an adjustment to a visual frame of reference or a control frame of reference based on the tip frame of reference and the desired frame of reference, and transforming the visual frame of reference or the control frame of reference.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Inventors: Ritwik Ummalaneni, Allen Jiang
  • Patent number: 10987179
    Abstract: Certain aspects relate to systems, methods, and techniques for correcting for uncommanded instrument roll. A method for adjusting a controller-feedback system in a medical instrument may comprise receiving data from a sensor at or near a distal end of the instrument, determining a tip frame of reference based on the data from the sensor, the tip frame of reference representing a current orientation of the distal end of the instrument, obtaining a desired frame of reference, determining an adjustment to a visual frame of reference or a control frame of reference based on the tip frame of reference and the desired frame of reference, and transforming the visual frame of reference or the control frame of reference.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: April 27, 2021
    Assignee: Auris Health, Inc.
    Inventors: Ritwik Ummalaneni, Allen Jiang
  • Patent number: 10987174
    Abstract: A patient introducer for use with a surgical robotic system is disclosed. In one aspect, the patient introducer may include an introducer tube extending between (i) a distal end connectable to a port and (ii) a proximal end configured to receive a surgical tool. The introducer tube may be configured to guide the surgical tool into the port. The patient introducer may also include an alignment member connected to the introducer tube and including a first shape and a first alignment marking. The alignment member may be configured to interface with a manipulator assembly of a robotic system. The manipulator assembly may include a second shape and a second alignment marking, the first shape being complementary to the second shape. The first alignment marking of the alignment member may facilitate rotational alignment of the alignment member and the manipulator assembly.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: April 27, 2021
    Assignee: Auris Health, Inc.
    Inventors: Jeffrey William Draper, Sergio L. Martinez, Jr., Ryan Jeffrey Connolly, Allen Jiang, David Paul Noonan, Douglas Bruce Dull
  • Publication number: 20210023340
    Abstract: Methods and apparatuses for detecting tension on a tendon and/or mechanical deformation (e.g., breakage) of one or more steering tendon of a steerable and flexible articulating device. Theses apparatuses may have one or more tendons that are each electrically conductive and configured to steer the apparatus when tension is applied to the proximal end of the tendon. Tension and/or breakage (or other deformation) of one or more of these tendons may be detected by monitoring the electrical resistance of the tendons.
    Type: Application
    Filed: October 15, 2020
    Publication date: January 28, 2021
    Inventor: Allen Jiang
  • Patent number: 10814101
    Abstract: Methods and apparatuses for detecting tension on a tendon and/or mechanical deformation (e.g., breakage) of one or more steering tendon of a steerable and flexible articulating device. Theses apparatuses may have one or more tendons that are each electrically conductive and configured to steer the apparatus when tension is applied to the proximal end of the tendon. Tension and/or breakage (or other deformation) of one or more of these tendons may be detected by monitoring the electrical resistance of the tendons.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 27, 2020
    Assignee: Auris Health, Inc.
    Inventor: Allen Jiang
  • Publication number: 20200315717
    Abstract: The disclosed technology includes improved microsurgical tools providing multiple degrees of freedom at the wrist level, including roll, pitch, and grasp DOFs, a tight articulation bending radius, low radial offset, and improved stiffness. Some implementations include an end effector platform moveable along a fixed trajectory on a fictional axle so as not to interfere with a central-axis aligned working channel; a crossed-arm mechanical linkage for articulating an end-effector platform throughout a pitch DOF with an amplified pitch angle; and a partial pulley system to articulate the arms while maximizing pulley radius to shaft diameter, and permitting a constant transmission efficiency to the arms throughout the range of articulation. In some implementations, a tool shaft outer diameter may be smaller than 3 mm; a pitch DOF range may be ±90°, a roll DOF range may be ±180°, and a grasp DOF range may be 30°.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 8, 2020
    Inventors: Loic Alexandre Bovay, Travis Schuh, Fernando Reyes, Allen Jiang
  • Publication number: 20200261172
    Abstract: Systems and methods for moving or manipulating robotic arms are provided. A group of robotic arms are configured to form a virtual rail or line between the end effectors of the robotic arms. The robotic arms are responsive to outside force such as from a user. When a user moves a single one of the robotic arms, the other robotic arms will automatically move to maintain the virtual rail alignments. The virtual rail of the robotic arm end effectors may be translated in one or more of three dimensions. The virtual rail may be rotated about a point on the virtual rail line. The robotic arms can detect the nature of the contact from the user and move accordingly. Holding, shaking, tapping, pushing, pulling, and rotating different parts of the robotic arm elicits different movement responses from different parts of the robotic arm.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Inventors: Enrique Romo, Frederic H. Moll, David S. Mintz, Mark Lown, Siddharth Oli, Allen Jiang