Patents by Inventor Allen Northrup

Allen Northrup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7858366
    Abstract: An integrated collection and detection system is configured to monitor the ambient air for specific particles, such as toxins and pathogens. An air collector captures airborne particles and outputs a fluid sample including the captured particles in a fluid solution. The collection and detection system includes a control module configured to control the processing of the fluid sample such that detection of one or more types of particles is fully automated within the integrated system. The types of particles to be processed and detected include, but are not limited to, cells, bacteria, viruses, nucleic acids, toxins, and other pathogens. If one or more specific types of particles are detected, a system alarm is triggered. The system alarm triggers a local audio/visual alarm and/or is transmitted over a communications network to either a local or central monitoring location. More than one collection and detection system can be coupled to the network and monitored by the central monitoring location.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: December 28, 2010
    Assignee: Microfluidic Systems, Inc
    Inventors: Allen Northrup, Farzad Pourahmadi, Bob Yuan, Amy J. Devitt
  • Patent number: 7785868
    Abstract: A standalone bench top laboratory instrument designed to disrupt, or lyse, cells, spores and tissue samples using ultrasonic energy. The lysing device is programmable, allowing the user control over the sample volume, sonication power level, and lysing duration in order to optimize lysing protocols for specific targets. Once a lysing protocol is entered, the device automatically lyses the sample according to the entered lysing protocol. The lysing device also provides a cooling feature, enabled by a heat exchanging sub-assembly, to prevent the sample from exceeding a maximum set temperature.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: August 31, 2010
    Assignee: Microfluidic Systems, Inc.
    Inventors: Bob Yuan, Allen Northrup, Farzad Pourahmadi
  • Patent number: 7705739
    Abstract: A collection and detection system is directed to a combined system in which a detect to warn system is integrated with a detect to treat system. Such a combined system provides multi-levels of detection to determine the presence and identity of one or more different types of specific particles. In some applications, the combined system is configured to detect and identify one or more different types of specific biological particles such as toxins and pathogens. The combined system includes a first level detection device, in which the presence of one or more toxins and/or pathogens are detected, and a second level detection device. Upon detection by the first level detection device, the second level detection device performs a second level of detection in which the one or more toxins and/or pathogens are identified.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: April 27, 2010
    Assignee: Microfluidic Systems, Inc.
    Inventors: Allen Northrup, Farzad Pourahmadi, Bob Yuan, Amy J. Devitt
  • Publication number: 20100068706
    Abstract: An analyte is separated from a fluid sample by introducing the sample into a cartridge having a sample port and a first flow path extending from the sample port. The first flow path includes an extraction chamber containing a solid support for capturing the analyte from the sample. The cartridge has a second flow path for eluting the captured analyte from the extraction chamber, the second flow diverging from the first flow path after passing through the extraction chamber. The sample is forced to flow through the extraction chamber and into a waste chamber, thereby capturing the analyte with the solid support as the sample flows through the extraction chamber. The captured analyte is then eluted from the extraction chamber by forcing an elution fluid to flow through the extraction chamber and along the second flow path.
    Type: Application
    Filed: February 12, 2009
    Publication date: March 18, 2010
    Applicant: Cepheid
    Inventors: Farzad Pourahmadi, William A. McMillan, Jesus Ching, Ronald Chang, Lee A. Christel, Gregory T.A. Kovacs, M. Allen Northrup, Kurt E. Petersen
  • Publication number: 20100050742
    Abstract: A collection and detection system is directed to a combined system in which a detect to warn system is integrated with a detect to treat system. Such a combined system provides multi-levels of detection to determine the presence and identity of one or more different types of specific particles. In some applications, the combined system is configured to detect and identify one or more different types of specific biological particles such as toxins and pathogens. The combined system includes a first level detection device, in which the presence of one or more toxins and/or pathogens are detected, and a second level detection device. Upon detection by the first level detection device, the second level detection device performs a second level of detection in which the one or more toxins and/or pathogens are identified.
    Type: Application
    Filed: August 24, 2006
    Publication date: March 4, 2010
    Inventors: Allen Northrup, Farzad Pourahmadi, Bob Yuan, Amy J. Devitt
  • Patent number: 7633606
    Abstract: A collection and detection system is configured as a detect to warn system in which the presence of specific types of particles are detected, and may or may not be identified. An air collection module intakes ambient air, detect the presence of one or more different types of airborne particles within the ambient air, and collect the airborne particles, such as within a fluid. A triggering mechanism is positioned to continuously monitor the airflow, to determine one or more characteristics of the airborne particles. If those measured characteristics match specific known characteristics, a trigger signal is generated. In response, a confirmation device performs a detection method on a fluid solution including the airflow particles to determine the presence of one or more different types of specific biological particles.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: December 15, 2009
    Assignee: Microfluidic Systems, Inc.
    Inventors: Allen Northrup, Farzad Pourahmadi, Bob Yuan, Amy J. Devitt
  • Patent number: 7578976
    Abstract: A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: August 25, 2009
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: M. Allen Northrup, Barton V. Beeman, William J. Benett, Dean R. Hadley, Phoebe Landre, Stacy L. Lehew, Peter A. Krulevitch
  • Patent number: 7569346
    Abstract: An analyte is separated from a fluid sample by introducing the sample into a cartridge having a sample port and a first flow path extending from the sample port. The first flow path includes an extraction chamber containing a solid support for capturing the analyte from the sample. The cartridge has a second flow path for eluting the captured analyte from the extraction chamber, the second flow diverging from the first flow path after passing through the extraction chamber. The sample is forced to flow through the extraction chamber and into a waste chamber, thereby capturing the analyte with the solid support as the sample flows through the extraction chamber. The captured analyte is then eluted from the extraction chamber by forcing an elution fluid to flow through the extraction chamber and along the second flow path.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: August 4, 2009
    Assignee: Cepheid
    Inventors: Kurt E. Petersen, William A. McMillan, Lee A. Christel, Ronald Chang, Farzad Pourahmadi, Jesus Ching, Gregory T. A. Kovacs, M. Allen Northrup
  • Publication number: 20080254532
    Abstract: A reaction vessel having a reaction chamber for holding a sample is fabricated by producing a housing having a rigid frame defining the minor walls of the chamber. The housing also defines a port for introducing fluid into the chamber. At least one sheet or film is attached to the rigid frame to form at least one major wall of the chamber. In preferred embodiments, two sheets or films are attached to opposite sides of the rigid frame to form two opposing major walls of the chamber, the major walls being connected to each other by the minor walls.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 16, 2008
    Applicant: Cepheid
    Inventors: Ronald Chang, Lee A. Christel, Gregory T.A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi, Steven J. Young, Robert Yuan, Douglas B. Dority
  • Publication number: 20080048874
    Abstract: A collection and detection system is configured as a detect to warn system in which the presence of specific types of particles are detected, and may or may not be identified. An air collection module intakes ambient air, detect the presence of one or more different types of airborne particles within the ambient air, and collect the airborne particles, such as within a fluid. A triggering mechanism is positioned to continuously monitor the airflow, to determine one or more characteristics of the airborne particles. If those measured characteristics match specific known characteristics, a trigger signal is generated. In response, a confirmation device performs a detection method on a fluid solution including the airflow particles to determine the presence of one or more different types of specific biological particles.
    Type: Application
    Filed: August 24, 2006
    Publication date: February 28, 2008
    Inventors: Allen Northrup, Farzad Pourahmadi, Bob Yuan, Amy J. Devitt
  • Publication number: 20080050803
    Abstract: An integrated collection and detection system is configured to monitor the ambient air for specific particles, such as toxins and pathogens. An air collector captures airborne particles and outputs a fluid sample including the captured particles in a fluid solution. The collection and detection system includes a control module configured to control the processing of the fluid sample such that detection of one or more types of particles is fully automated within the integrated system. The types of particles to be processed and detected include, but are not limited to, cells, bacteria, viruses, nucleic acids, toxins, and other pathogens. If one or more specific types of particles are detected, a system alarm is triggered. The system alarm triggers a local audio/visual alarm and/or is transmitted over a communications network to either a local or central monitoring location. More than one collection and detection system can be coupled to the network and monitored by the central monitoring location.
    Type: Application
    Filed: August 24, 2006
    Publication date: February 28, 2008
    Inventors: Allen Northrup, Farzad Pourahmadi, Bob Yuan, Amy J. Devitt
  • Patent number: 7297313
    Abstract: An integrated microfabricated instrument for manipulation, reaction and detection of microliter to picoliter samples. The instrument is suited for biochemical reactions, particularly DNA-based reactions such as the polymerase chain reaction, that require thermal cycling since the inherently small size of the instrument facilitates rapid cycle times. The integrated nature of the instrument provides accurate, contamination-free processing. The instrument may include reagent reservoirs, agitators and mixers, heaters, pumps, and optical or electromechanical sensors. Ultrasonic Lamb-wave devices may be used as sensors, pumps and agitators.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 20, 2007
    Assignee: The Regents of the University of California
    Inventors: M. Allen Northrup, Richard M. White
  • Patent number: 7255833
    Abstract: This invention provides an apparatus for rapidly heating and/or cooling a sample in a reaction vessel. In some embodiments, the apparatus includes optics for the efficient detection of a reaction product in the vessel. The invention also provides a reaction vessel having a reaction chamber designed for optimal thermal conductance and for efficient optical viewing of reaction products in the chamber.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: August 14, 2007
    Assignee: Cepheid
    Inventors: Ronald Chang, Lee A. Christel, Gregory T. A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi, Steven J. Young, Robert Yuan, Douglas B. Dority
  • Patent number: 7188001
    Abstract: A system for controlling the temperature of a reaction mixture comprises at least one heating device for heating the mixture and a power regulator for regulating the amount of power supplied to the heating device. A controller in communication with the power regulator includes program instructions for heating the reaction mixture by setting a variable target temperature that initially exceeds a desired setpoint temperature for the mixture. When the heating device reaches a threshold temperature, the variable target temperature is decreased to the desired setpoint temperature. In another embodiment, the controller includes an adaptive control program for dynamically adjusting the duration or intensity of power pulses provided to the heating device.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: March 6, 2007
    Assignee: Cepheid
    Inventors: Steven J. Young, Gregory T. A. Kovacs, M. Allen Northrup, Kurt E. Petersen, William A. McMillan, Konstantin Othmer, Lee A. Christel
  • Patent number: 7169601
    Abstract: An integrated microfabricated instrument for manipulation, reaction and detection of microliter to picoliter samples. The instrument is suited for biochemical reactions, particularly DNA-based reactions such as the polymerase chain reaction, that require thermal cycling since the inherently small size of the instrument facilitates rapid cycle times. The integrated nature of the instrument provides accurate, contamination-free processing. The instrument may include reagent reservoirs, agitators and mixers, heaters, pumps, and optical or electromechanical sensors. Ultrasonic Lamb-wave devices may be used as sensors, pumps and agitators.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: January 30, 2007
    Assignee: The Regents of the University of California
    Inventors: M. Allen Northrup, Richard M. White
  • Patent number: 7135144
    Abstract: The invention provides a device and method for the manipulation of materials (e.g., particles, cells, macromolecules, such as proteins, nucleic acids or other moieties) in a fluid sample. The device comprises a substrate having a plurality of microstructures and an insulator film on the structures. Application of a voltage to the structures induces separation of materials in the sample. The device and method are useful for a wide variety of applications such as dielectrophoresis (DEP) or the separation of a target material from other material in a fluid sample.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: November 14, 2006
    Assignee: Cepheid
    Inventors: Lee A. Christel, Gregory T. A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi
  • Publication number: 20060246501
    Abstract: An extraction and analysis device includes a microfluidic based collection system that extracts one or more different analytes from a fluid-based sample and an optical analysis system directly coupled to the collection system to perform optical analysis on the one or more collected analytes. The microfluidic based collection system includes microfluidic circuitry for directing a fluid based sample to a purification chip. Analytes collected within the purification chip can be either subsequently removed and analyzed or the analytes can be analyzed directly, while still within the purification chip, using the optical analysis system. The purification chip is preferably comprised of a plurality of pillars, the surface area of each pillar is coated with a specific capture chemistry. The specific capture chemistry is applied by derivitizing the pillars such that a ligand, such as a nucleic acid, an amptimer, or an antibody is attached to each pillar.
    Type: Application
    Filed: June 29, 2006
    Publication date: November 2, 2006
    Inventor: Allen Northrup
  • Publication number: 20060121603
    Abstract: A standalone bench top laboratory instrument designed to disrupt, or lyse, cells, spores and tissue samples using ultrasonic energy. The lysing device is programmable, allowing the user control over the sample volume, sonication power level, and lysing duration in order to optimize lysing protocols for specific targets. Once a lysing protocol is entered, the device automatically lyses the sample according to the entered lysing protocol. The lysing device also provides a cooling feature, enabled by a heat exchanging sub-assembly, to prevent the sample from exceeding a maximum set temperature.
    Type: Application
    Filed: November 29, 2005
    Publication date: June 8, 2006
    Inventors: Bob Yuan, Allen Northrup, Farzad Pourahmadi
  • Patent number: 6979424
    Abstract: An analysis device comprises a body having a reaction chamber for chemically reacting a sample, a separation region for separating components of the sample, and a transition region connecting the reaction chamber to the separation region. The transition region includes at least one valve for controlling the flow of fluid between the reaction chamber and the separation region. Further, the transition region thermally isolates the reaction chamber from the separation region. In a preferred embodiment, the reaction chamber is an amplification chamber for amplifying nucleic acid in the sample, and the separation region comprises an electrophoresis channel containing a suitable matrix material, such as electrophoresis gel or buffer, for separating nucleic acid fragments. Electrodes are embedded in the body for separation of sample components. The body may also be surrounded by external, functional components such as an optical detector for detecting separated components of the sample.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: December 27, 2005
    Assignee: Cepheid
    Inventors: M. Allen Northrup, Kurt E. Petersen, William A. McMillan, Gregory T. A. Kovacs
  • Patent number: 6940598
    Abstract: An apparatus for thermally controlling and optically interrogating a reaction mixture includes a vessel [2] having a chamber [10] for holding the mixture. The apparatus also includes a heat-exchanging module [37] having a pair of opposing thermal plates [34A, 34B] for receiving the vessel [2] between them and for heating/and or cooling the mixture contained in the vessel. The module [37] also includes optical excitation and detection assemblies [46,48] positioned to optically interrogate the mixture. The excitation assembly [46] includes multiple light sources [100] and a set of filters for sequentially illuminating labeled analytes in the mixture with excitation beams in multiple excitation wavelength ranges. The detection assembly [48] includes multiple detectors [102] and a second set of filters for detecting light emitted from the chamber [10] in multiple emission wavelength ranges.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: September 6, 2005
    Assignee: Cepheid
    Inventors: Lee A. Christel, M. Allen Northrup, Kurt E. Petersen, William A. McMillan, Gregory T. A. Kovacs, Steven J. Young, Ronald Chang, Douglas B. Dority, Raymond T. Hebert, Gregory J. Kintz