Patents by Inventor Allen S. Bulick

Allen S. Bulick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10246474
    Abstract: The present invention is a process for converting a phosphonate to a hydroxyalkyl phosphonic acid comprising the step of contacting together water, the phosphonate, and a sulfonated or phosphonated heterogeneous catalyst under conditions sufficient to convert at least 50% of the phosphonate to the hydroxyalkyl phosphonic acid. The process of the present invention provides a way of preparing hydroxyalkyl phosphonic acids safely and economically, without corrosive effects.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: April 2, 2019
    Assignee: Rohm and Haas Company
    Inventors: Allen S. Bulick, Sarah L. Hruby, Muhunthan Sathiosatham
  • Patent number: 9633831
    Abstract: A method of polishing a sapphire substrate is provided, comprising: providing a substrate having an exposed sapphire surface; providing a chemical mechanical polishing slurry, wherein the chemical mechanical polishing slurry comprises, as initial components: colloidal silica abrasive, wherein the colloidal silica abrasive has a negative surface charge; and, wherein the colloidal silica abrasive exhibits a multimodal particle size distribution with a first particle size maximum between 2 and 25 nm; and, a second particle size maximum between 75 and 200 nm; optionally, a biocide; optionally, a nonionic defoaming agent; and, optionally, a pH adjuster. A chemical mechanical polishing composition for polishing an exposed sapphire surface is also provided.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: April 25, 2017
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Nitta Haas Incorporated
    Inventors: Allen S. Bulick, Hideaki Nishizawa, Kazuki Moriyama, Koichi Yoshida, Shunji Ezawa, Selvanathan Arumugam
  • Patent number: 9550748
    Abstract: A cyclic carbonate monomer including the reaction product of (a) a divinylarene dioxide, and (b) carbon dioxide; a process for making the cyclic carbonate monomer; and a polymer such as a poly(hydroxyurethane) composition made therefrom. The poly(hydroxyurethane) composition made from the above cyclic carbonate monomer forms a reactive intermediate that can be used for making, for example, a poly(hydroxyurethane) foam product.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 24, 2017
    Assignee: BLUE CUBE IP LLC
    Inventors: Maurice J. Marks, Allen S. Bulick, Phillip S. Athey, Dwight D. Latham
  • Publication number: 20150361117
    Abstract: The present invention is a process for converting a phosphonate to a hydroxyalkyl phosphonic acid comprising the step of contacting together water, the phosphonate, and a sulfonated or phosphonated heterogeneous catalyst under conditions sufficient to convert at least 50% of the phosphonate to the hydroxyalkyl phosphonic acid. The process of the present invention provides a way of preparing hydroxyalkyl phosphonic acids safely and economically, without corrosive effects.
    Type: Application
    Filed: June 8, 2015
    Publication date: December 17, 2015
    Inventors: Allen S. Bulick, Sarah L. Hruby, Muhunthan Sathiosatham
  • Publication number: 20150053642
    Abstract: A method of polishing a sapphire substrate is provided, comprising: providing a substrate having an exposed sapphire surface; providing a chemical mechanical polishing slurry, wherein the chemical mechanical polishing slurry comprises, as initial components: colloidal silica abrasive, wherein the colloidal silica abrasive has a negative surface charge; and, wherein the colloidal silica abrasive exhibits a multimodal particle size distribution with a first particle size maximum between 2 and 25 nm; and, a second particle size maximum between 75 and 200 nm; optionally, a biocide; optionally, a nonionic defoaming agent; and, optionally, a pH adjuster. A chemical mechanical polishing composition for polishing an exposed sapphire surface is also provided.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 26, 2015
    Applicant: NITTA HAAS INCORPORATED
    Inventors: Allen S. Bulick, Hideaki Nishizawa, Kazuki Moriyama, Koichi Yoshida, Shunji Ezawa, Selvanathan Arumugam
  • Publication number: 20140191156
    Abstract: A cyclic carbonate monomer including the reaction product of (a) a divinylarene dioxide, and (b) carbon dioxide; a process for making the cyclic carbonate monomer; and a polymer such as a poly(hydroxyurethane) composition made therefrom. The poly(hydroxyurethane) composition made from the above cyclic carbonate monomer forms a reactive intermediate that can be used for making, for example, a poly(hydroxyurethane) foam product.
    Type: Application
    Filed: July 19, 2012
    Publication date: July 10, 2014
    Inventors: Maurice J. Marks, Allen S. Bulick, Phillip S. Athey, Dwight D. Latham
  • Patent number: 8455607
    Abstract: A curable liquid polysiloxane/TiO2 composite for use as a light emitting diode encapsulant is provided, comprising: a polysiloxane with TiO2 domains having an average domain size of less than 5 nm, wherein the curable liquid polysiloxane/TiO2 composite contains 20 to 60 mol % TiO2 (based on total solids); wherein the curable liquid polysiloxane/TiO2 composite exhibits a refractive index of >1.61 to 1.7 and wherein the curable liquid polysiloxane/TiO2 composite is a liquid at room temperature and atmospheric pressure. Also provided is a light emitting diode manufacturing assembly.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 4, 2013
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Weijun Zhou, Binghe Gu, John W. Lyons, Allen S. Bulick, Garo Khanarian, Paul J. Popa, John R. Ell
  • Patent number: 8450445
    Abstract: A method of making a light emitting diode (LED) having an optical element is provided, comprising: providing a curable liquid polysiloxane/TiO2 composite, which exhibits a refractive index of >1.61 to 1.7 and which is a liquid at room temperature and atmospheric pressure; providing a semiconductor light emitting diode die having a face, wherein the semiconductor light emitting diode die emits light through the face; contacting the semiconductor light emitting diode die with the curable liquid polysiloxane/TiO2 composite; and, curing the curable liquid polysiloxane/TiO2 composite to form an optical element; wherein at least a portion of the optical element is adjacent to the face.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 28, 2013
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: John W. Lyons, Binghe Gu, Allen S. Bulick, Weijun Zhou, Paul J. Popa, Garo Khanarian, John R. Ell
  • Publication number: 20130045292
    Abstract: A curable liquid polysiloxane/TiO2 composite for use as a light emitting diode encapsulant is provided, comprising: a polysiloxane with TiO2 domains having an average domain size of less than 5 nm, wherein the curable liquid polysiloxane/TiO2 composite contains 20 to 60 mol % TiO2 (based on total solids); wherein the curable liquid polysiloxane/TiO2 composite exhibits a refractive index of >1.61 to 1.7 and wherein the curable liquid polysiloxane/TiO2 composite is a liquid at room temperature and atmospheric pressure. Also provided is a light emitting diode manufacturing assembly.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Weijun Zhou, Binghe Gu, John W. Lyons, Allen S. Bulick, Garo Khanarian, Paul J. Popa, John R. Ell
  • Publication number: 20130045552
    Abstract: A method of making a light emitting diode (LED) having an optical element is provided, comprising: providing a curable liquid polysiloxane/TiO2 composite, which exhibits a refractive index of >1.61 to 1.7 and which is a liquid at room temperature and atmospheric pressure; providing a semiconductor light emitting diode die having a face, wherein the semiconductor light emitting diode die emits light through the face; contacting the semiconductor light emitting diode die with the curable liquid polysiloxane/TiO2 composite; and, curing the curable liquid polysiloxane/TiO2 composite to form an optical element; wherein at least a portion of the optical element is adjacent to the face.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: John W. Lyons, Binghe Gu, Allen S. Bulick, Weijun Zhou, Paul J. Popa, Garo Khanarian, John R. Ell