Patents by Inventor Allen V. Keller

Allen V. Keller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9732394
    Abstract: A method of treating bearing rolling elements or bearing rings after a hardening and temper heat treatment is disclosed. The method may include treating the bearing rolling elements in a tumbling treatment and then in a duplex hardening treatment. The method may include treating the bearing rings in a peening treatment and then in a duplex hardening treatment. The duplex hardening treatment may also include at least one sequential process segment consisting of subjecting the bearing rolling element & rings to a nitriding process to increase the surface hardness and compressive residual stress. The combined two-step process produces a deep surface/sub-surface residual stress greater than the depth of the maximum operating von-Mises shear stress along with an ultra-hard surface with high magnitude of compressive residual stress. In so doing, the bearing ring and rolling elements will have significantly enhanced rolling contact fatigue resistance and resistance to surface imperfections and debris.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 15, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Herbert A. Chin, William P. Ogden, David A. Haluck, Sean McCutchan, Ronald F. Spitzer, Allen V. Keller
  • Publication number: 20130306194
    Abstract: A method of treating bearing rolling elements or bearing rings after a hardening and temper heat treatment is disclosed. The method may include treating the bearing rolling elements in a tumbling treatment and then in a duplex hardening treatment. The method may include treating the bearing rings in a peening treatment and then in a duplex hardening treatment. The duplex hardening treatment may also include at least one sequential process segment consisting of subjecting the bearing rolling element & rings to a nitriding process to increase the surface hardness and compressive residual stress. The combined two-step process produces a deep surface/sub-surface residual stress greater than the depth of the maximum operating von-Mises shear stress along with an ultra-hard surface with high magnitude of compressive residual stress. In so doing, the bearing ring and rolling elements will have significantly enhanced rolling contact fatigue resistance and resistance to surface imperfections and debris.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Inventors: Herbert A. Chin, William P. Ogden, David A. Haluck, Sean McCutchan, Ronald F. Spitzer, Allen V. Keller