Patents by Inventor Allen W. Burton

Allen W. Burton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939225
    Abstract: A composition can include a Rho zeolite with a RHO topology having a Si to B ratio or a Si to Al ratio greater than or equal to 8. Making such a composition can include heating an aqueous reaction mixture having a molar ratio of atomic Si to atomic B of about 4 to about 50 or a molar ratio of atomic Si to atomic Al of about 4 to about 50 in the presence of a C4-C6 diquat of N,2-dimethylbenzimidazole structure directing agent to a temperature of at least 75° C. to produce a Rho zeolite.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 26, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Joseph M. Falkowski, Hilda Bouza Vroman, Allen W. Burton, Eugene Terefenko, Kanmi Mao, Karl G. Strohmaier
  • Publication number: 20240010506
    Abstract: An aluminosilicate zeolite may have a molar ratio of Si to Al of about 3 to about 10, a monoclinic space group C2/m with unit cell dimensions of a of 13.6 ?+/?5%, b of 21.7 ?+/?5%, c of 6.7 ?+/?5%, and ? of 93°+/?3°, 12-ring pores along a c-axis having dimensions of 7 ?+/?5% by 6 ?+/?5%, and 8-ring pores along an a-axis having dimensions of 3 ?+/?5% by 3 ?+/?5%. Said aluminosilicate zeolites may be useful in hydrocarbon conversion processes, selective catalytic reduction of NOx, CO2 and/or N2 adsorption, carbonylation reactions, and the monoalkylamine and dialkylamine syntheses.
    Type: Application
    Filed: August 7, 2020
    Publication date: January 11, 2024
    Inventors: Allen W. Burton, Hilda B. Vroman, Joseph M. Falkowski
  • Patent number: 11827593
    Abstract: A process for producing a monoalkylated benzene comprises contacting benzene with a mixture comprising dialkylated and trialkylated benzenes in the presence of a transalkylation catalyst composition under transalkylation conditions effective to convert at least part of the dialkylated and trialkylated benzene to monoalkylated benzene, wherein the catalyst composition comprises a metallosilicate zeolite comprising openings defined by 14-membered rings of tetrahedrally coordinated atoms and the transalkylation conditions include a temperature in the range of 160° C. to 220° C.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: November 28, 2023
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: Aaron W. Peters, William J. Knaeble, Allen W. Burton, Ivy D. Johnson, Christopher G. Oliveri, Reuben Britto
  • Patent number: 11820723
    Abstract: A process for producing a monoalkylated benzene comprises the step of contacting benzene with a mixture comprising dialkylated and trialkylated benzenes in the presence of a transalkylation catalyst composition under transalkylation conditions effective to convert at least part of the dialkylated and trialkylated benzene to monoalkylated benzene, wherein the transalkylation catalyst, composition comprises zeolite beta having an external surface in excess of 350 m2/g as determined by the t-plot method for nitrogen physisorption.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: November 21, 2023
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: Aaron W. Peters, William J. Knaeble, Allen W. Burton, Ivy D. Johnson, Christopher G. Oliveri, Reuben Britto
  • Patent number: 11739274
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: August 29, 2023
    Assignee: Exxon Mobil Technology and Engineering Company
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20220388853
    Abstract: A method of making a molecular sieve may include: reacting a source selected from the group consisting of: a source of a tetrahedral element in the presence of a structure directing agent (SDA) selected from the group consisting of: Ar+-L-Ar, Ar+-L-Ar-L-Ar+, Ar+-L-Ar-L-NR3+, and ArAr+-L-Ar+Ar, where Ar+ is to a N-containing cationic aromatic ring, Ar is to a non-charged aromatic ring, L is a methylene chain of 3-6 carbon atoms, NR3+ is to a quaternary ammonium, and ArAr+ and Ar+Ar are a fused aromatic ring structure comprising both a N-containing cationic portion and a non-charged portion, to produce the molecular sieve.
    Type: Application
    Filed: July 22, 2020
    Publication date: December 8, 2022
    Inventors: Allen W. Burton, Hilda B. Vroman, Joseph M. Falkowski, Eugene Terefenko, Michael A. Marella, Ross Mabon
  • Publication number: 20220380686
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more large pore zeolitic catalysts, which may be prepared from a precursor zeolite. In some examples, a large pore zeolitic catalyst may be utilized to selectively reduce the endpoint of a hydrocarbon composition.
    Type: Application
    Filed: July 14, 2020
    Publication date: December 1, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20220371972
    Abstract: A process for producing a monoalkylated benzene comprises the step of contacting benzene with a mixture comprising dialkylated and trialkylated benzenes in the presence of a transalkylation catalyst composition under transalkylation conditions effective to convert at least part of the dialkylated and trialkylated benzene to monoalkylated benzene, wherein the transalkylation catalyst, composition comprises zeolite beta having an external surface in excess of 350 m2/g as determined by the t-plot method for nitrogen physisorption.
    Type: Application
    Filed: September 16, 2020
    Publication date: November 24, 2022
    Inventors: Aaron W. Peters, William J. Knaeble, Allen W. Burton, Ivy D. Johnson, Christopher G. Oliveri, Reuben Britto
  • Publication number: 20220356132
    Abstract: A process for producing a monoalkylated benzene comprises contacting benzene with a mixture comprising dialkylated and trialkylated benzenes in the presence of a transalkylation catalyst composition under transalkylation conditions effective to convert at least part of the dialkylated and trialkylated benzene to monoalkylated benzene, wherein the catalyst composition comprises a metallosilicate zeolite comprising openings defined by 14-membered rings of tetrahedrally coordinated atoms and the transalkylation conditions include a temperature in the range of 160° C. to 220° C.
    Type: Application
    Filed: September 16, 2020
    Publication date: November 10, 2022
    Inventors: Aaron W. Peters, William J. Knaeble, Allen W. Burton, Ivy D. Johnson, Christopher G. Oliveri, Reuben Britto
  • Publication number: 20220340436
    Abstract: A method can include heating an aqueous reaction mixture comprising a silicon source and a boron source and/or an aluminum source in the presence of a diquaternary structure directing agent to a temperature of at least 75° C. to produce a zeolite. A composition can include a borosilicate zeolite, an aluminosilicate zeolite, or an aluminoborosilicate zeolite having a framework symmetry of C2/m and a unit cell with measurements of a of 3.5 ? to 4.5 ?, b of 20.1 ? to 21.1 ?, c of 15.5 to 16.5 ?, and ? of 97° to 98°.
    Type: Application
    Filed: July 22, 2020
    Publication date: October 27, 2022
    Inventors: Ross Mabon, Allen W. Burton, Hilda B. Vroman, Simon C. Weston
  • Publication number: 20220290057
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Application
    Filed: July 14, 2020
    Publication date: September 15, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20220023827
    Abstract: This disclosure relates to EMM-41 materials, methods for making it, and processes for its use. This disclosure also relates to the structure directing agents used in the methods for making the EMM-41 material as well as the synthesis method used to prepare such structure directing agents.
    Type: Application
    Filed: November 12, 2019
    Publication date: January 27, 2022
    Inventors: Ross Mabon, Michael A. Marella, Allen W. Burton, Hilda B. Vroman, Kirk D. Schmitt, Tom Willhammar, Hongyi Xu, Xiaodong Zou, Simon C. Weston
  • Publication number: 20210380425
    Abstract: A composition can include a Rho zeolite with a RHO topology having a Si to B ratio or a Si to A1 ratio greater than or equal to 8. Making such a composition can include heating an aqueous reaction mixture having a molar ratio of atomic Si to atomic B of about 4 to about 50 or a molar ratio of atomic Si to atomic Al of about 4 to about 50 in the presence of a C4-C6 diquat of N,2-dimethylbenzimidazole structure directing agent to a temperature of at least 75° C. to produce a Rho zeolite.
    Type: Application
    Filed: November 1, 2019
    Publication date: December 9, 2021
    Inventors: Joseph M. Falkowski, Hilda Bouza Vroman, Allen W. Burton, Eugene Terefenko, Kanmi Mao, Karl G. Strohmaier
  • Patent number: 11180430
    Abstract: The disclosure relates to olefin oligomerization processes and related zeolites and structure directing agents. The olefin oligomerization processes can exhibit relatively high conversions. The zeolites can exhibit comparatively high stabilities. The zeolites can have relatively high ratios of external surface area to total surface area. An exemplary zeolite is a beta zeolite having a relatively high ratio of external surface area to total surface area. The disclosure also relates to structure directing agents, and methods of using the structure direction agents to prepare the zeolites.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 23, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alejandra R. Rivas Cardona, Allen W. Burton, Sina Sartipi, Andrew D. Wiersum, Lara A. Truter, Marianne F. Smits
  • Publication number: 20210300842
    Abstract: Zeolitic and molecular organic framework materials as catalysts suitable for generating branched olefins from linear olefins, thereby increasing the octane of a composition comprising the linear olefins. In particular, catalyst may exhibit selectivity for methyl-shift isomerization over cracking, alkylation, and oligomerization.
    Type: Application
    Filed: February 16, 2021
    Publication date: September 30, 2021
    Inventors: Brandon J. O'Neill, Joe M. Falkowski, Allen W. Burton, Scott J. Weigel, Randall J. Meyer, Ajit B. Dandekar
  • Patent number: 10899971
    Abstract: Methods are provided for performing fluid catalytic cracking (and/or other hydrothermal processing for cracking of hydrocarbons) on a feedstock containing hydrocarbons in the presence of a catalyst that includes zeolite Beta that is stabilized toward hydrothermal conditions. The hydrothermally stabilized zeolite Beta (including any of the various polymorphs) corresponds to zeolite Beta that is formed without the use of an organic structure directing agent, and that is further stabilized by addition of one or more stabilizers, such as lanthanide series elements or phosphorus.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: January 26, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Allen W. Burton, Scott J. Weigel, Mobae Afeworki
  • Patent number: 10858298
    Abstract: This disclosure relates to the preparation of diphenyl compounds, especially dimethylbiphenyl compounds, in which there is one methyl group on each ring, and their oxidized analogues. These compounds, and particularly alkylated biphenyl compounds and biphenylcarboxylic acids, alcohols and esters, are useful intermediates in the production of a variety of commercially valuable products, including polyesters and plasticizers for PVC and other polymer compositions.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: December 8, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Aaron Sattler, Victor DeFlorio, Michele L. Paccagnini, Allen W. Burton
  • Patent number: 10807875
    Abstract: The zeolite UTD-1 may be formed under hydrothermal synthesis conditions using a directing agent that does not include a metal atom therein. Methods for synthesizing the zeolite UTD-1 may comprise: combining at least a silicon atom source and a directing agent having a structure of in an aqueous medium; forming the zeolite in the aqueous medium under hydrothermal synthesis conditions, such that the zeolite has a framework silicate with a cationic portion of the directing agent occluded within pores or channels of the framework silicate; and isolating the zeolite from the aqueous medium. The zeolite has a powder x-ray diffraction pattern with at least the following 2?scattering angles: 6.0±0.12, 7.6±0.1, 14.66±0.15, 19.7±0.15, 21.27±0.15, 22.13±0.15, 22.61±0.15, and 24.42±0.10 for a borosilicate form zeolite, or 6.0±0.12, 7.6±0.15, 14.55±0.15, 19.64±0.15, 21.01±0.20, 21.90±0.20, 22.34±0.20, and 24.38±0.20 for an aluminosilicate form zeolite.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: October 20, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Allen W. Burton, Hilda B. Vroman, Joseph M. Falkowski, Eugene Terefenko, Kanmi Mao
  • Publication number: 20200325084
    Abstract: The disclosure relates to olefin oligomerization processes and related zeolites and structure directing agents. The olefin oligomerization processes can exhibit relatively high conversions. The zeolites can exhibit comparatively high stabilities. The zeolites can have relatively high ratios of external surface area to total surface area. An exemplary zeolite is a beta zeolite having a relatively high ratio of external surface area to total surface area. The disclosure also relates to structure directing agents, and methods of using the structure direction agents to prepare the zeolites.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 15, 2020
    Inventors: Alejandra R. Rivas Cardona, Allen W. Burton, Sina Sartipi, Andrew D. Wiersum, Lara A. Truter, Marianne F. Smith
  • Patent number: 10799466
    Abstract: The present invention provides methods for reducing pain in a subject in need of such pain reduction by delivering, e.g., intrathecally or epidurally, a volatile anesthetic such as a halogenated ether compound in an amount effective to reduce pain. Chronic or acute pain may be treated, or the anesthetic may be delivered to the subject to anesthetize the subject prior to a surgery. In certain embodiments, isoflurane, halothane, enflurane, sevoflurane, desflurane, methoxyflurane, xenon, and mixtures thereof may be used. Dosing regimens including a one-time administration, continuous and/or periodic administration are contemplated.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: October 13, 2020
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Phillip C. Phan, Allen W. Burton