Patents by Inventor Allen Yu-Li Wang

Allen Yu-Li Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10637129
    Abstract: A wearable computing device can include a monopole-excited slot antenna formed by a gap between a housing (such as a highly conductive housing) and a bracket (such as a highly conductive bracket) within the highly conductive housing and by a back cavity between the highly conductive bracket and the PCB. The antenna configuration can include a monopole antenna electrically coupled to a printed circuit board and a slot antenna that is excited through coupled electromagnetic fields. The highly conductive bracket is positioned near a display window of the device, mostly below and partially enclosing a battery. The highly conductive bracket is positioned above the printed circuit board. This configuration allows for a relatively small dead band in the display window, a larger battery, compact and mechanically simple configuration, and superior water resistance.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: April 28, 2020
    Assignee: Fitbit, Inc.
    Inventors: Yonghua Wei, Kevin Li, Patrick James Markan, Allen Yu-Li Wang, Teemu Taneli Raafael Kaiponen, Christos Kinezos Ioannou
  • Patent number: 10537039
    Abstract: Mechanisms for providing inductance-based user interface elements are provided. Some implementations of such inductance-based devices may feature very small gaps between the housing and the inductive coil, as well as various features to aid in improving sensor sensitivity and reducing the possibility of false button-push events.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: January 14, 2020
    Assignee: Fitbit, Inc.
    Inventors: Aditya Vivekanand Nadkarni, Allen Yu-Li Wang, Benjamin Patrick Robert Jean Riot, Reza Yazdani, Dennis Alejandro Grijalva, Edison Tam King Miguel, Vaibhav Kiran Mistry, Yonghua Wei
  • Publication number: 20190260116
    Abstract: A wearable computing device can include a monopole-excited slot antenna formed by a gap between a housing (such as a highly conductive housing) and a bracket (such as a highly conductive bracket) within the highly conductive housing and by a back cavity between the highly conductive bracket and the PCB. The antenna configuration can include a monopole antenna electrically coupled to a printed circuit board and a slot antenna that is excited through coupled electromagnetic fields. The highly conductive bracket is positioned near a display window of the device, mostly below and partially enclosing a battery. The highly conductive bracket is positioned above the printed circuit board. This configuration allows for a relatively small dead band in the display window, a larger battery, compact and mechanically simple configuration, and superior water resistance.
    Type: Application
    Filed: January 22, 2019
    Publication date: August 22, 2019
    Inventors: Yonghua Wei, Kevin Li, Patrick James Markan, Allen Yu-Li Wang, Teemu Taneli Raafael Kaiponen, Christos Kinezos Ioannou
  • Publication number: 20190215977
    Abstract: Mechanisms for providing inductance-based user interface elements are provided. Some implementations of such inductance-based devices may feature very small gaps between the housing and the inductive coil, as well as various features to aid in improving sensor sensitivity and reducing the possibility of false button-push events.
    Type: Application
    Filed: November 16, 2018
    Publication date: July 11, 2019
    Inventors: Aditya Vivekanand Nadkarni, Allen Yu-Li Wang, Benjamin Patrick Robert Jean Riot, Reza Yazdani, Dennis Alejandro Grijalva, Edison Tam King Miguel, Vaibhav Kiran Mistry, Yonghua Wei
  • Patent number: 10320063
    Abstract: A wearable computing device can include a monopole-excited slot antenna formed by a gap between a housing (such as a highly conductive housing) and a bracket (such as a highly conductive bracket) within the highly conductive housing and by a back cavity between the highly conductive bracket and the PCB. The antenna configuration can include a monopole antenna electrically coupled to a printed circuit board and a slot antenna that is excited through coupled electromagnetic fields. The highly conductive bracket is positioned near a display window of the device, mostly below and partially enclosing a battery. The highly conductive bracket is positioned above the printed circuit board. This configuration allows for a relatively small dead band in the display window, a larger battery, compact and mechanically simple configuration, and superior water resistance.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: June 11, 2019
    Assignee: Fitbit, Inc.
    Inventors: Yonghua Wei, Kevin Li, Patrick James Markan, Allen Yu-Li Wang, Teemu Taneli Raafael Kaiponen, Christos Kinezos Ioannou
  • Patent number: 10136543
    Abstract: Mechanisms for providing inductance-based user interface elements are provided. Some implementations of such inductance-based devices may feature very small gaps between the housing and the inductive coil, as well as various features to aid in improving sensor sensitivity and reducing the possibility of false button-push events.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: November 20, 2018
    Assignee: Fitbit, Inc.
    Inventors: Aditya Vivekanand Nadkarni, Allen Yu-Li Wang, Benjamin Patrick Robert Jean Riot, Reza Yazdani, Dennis Alejandro Grijalva, Edison Tam King Miguel, Vaibhav Kiran Mistry, Yonghua Wei
  • Publication number: 20180166772
    Abstract: A wearable computing device can include a monopole-excited slot antenna formed by a gap between a housing (such as a highly conductive housing) and a bracket (such as a highly conductive bracket) within the highly conductive housing and by a back cavity between the highly conductive bracket and the PCB. The antenna configuration can include a monopole antenna electrically coupled to a printed circuit board and a slot antenna that is excited through coupled electromagnetic fields. The highly conductive bracket is positioned near a display window of the device, mostly below and partially enclosing a battery. The highly conductive bracket is positioned above the printed circuit board. This configuration allows for a relatively small dead band in the display window, a larger battery, compact and mechanically simple configuration, and superior water resistance.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 14, 2018
    Inventors: Yonghua Wei, Kevin Li, Patrick James Markan, Allen Yu-Li Wang, Teemu Taneli Raafael Kaiponen, Christos Kinezos Ioannou