Patents by Inventor Allison Ryan
Allison Ryan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240376544Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: August 1, 2024Publication date: November 14, 2024Applicant: Natera, Inc.Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Eser Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
-
Publication number: 20240336970Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: June 21, 2024Publication date: October 10, 2024Applicant: Natera, Inc.Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
-
Patent number: 12110552Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: GrantFiled: April 23, 2020Date of Patent: October 8, 2024Assignee: Natera, Inc.Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
-
Publication number: 20240331799Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: February 23, 2024Publication date: October 3, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew Hill, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20240327919Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: June 18, 2024Publication date: October 3, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, Matthew Micah HILL, Bernhard ZIMMERMANN, Johan BANER, George GEMELOS, Milena Eser BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240315942Abstract: The present invention is directed to a personal care composition comprising from about 14% to about 40% of one or more surfactants; from about 0.1% to about 10% of one or more surfactant soluble agents having a ClogP greater than 3.0; wherein when the personal care composition is diluted to about 1.5% surfactant concentration has a ratio of surfactant diffusion coefficient to soluble agent diffusion coefficient greater than 1.2.Type: ApplicationFiled: May 31, 2024Publication date: September 26, 2024Inventors: Debora W. Chang, Eric Scott Johnson, Robert Wayne Glenn, JR., Todd Ryan Thompson, Michelle Lynn Carter, Allison Lynn Edwards, Charles David Eads, Stacy Renee Hertenstein, Jennifer Anne Corder, Steven Louis Diersing, Jianjun Justin Li, Ruzhan Peng
-
Publication number: 20240318252Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: June 4, 2024Publication date: September 26, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, Matthew Micah HILL, Bernhard A. ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240309456Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: May 30, 2024Publication date: September 19, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, Matthew Micah HILL, Bernhard A. ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240301482Abstract: The invention provides improved methods, compositions, and kits for detecting ploidy of chromosome regions, e.g. for detecting cancer or a chromosomal abnormality in a gestating fetus. The methods can utilize a set of more than 200 SNPs that are found within haploblocks and can include analyzing a series of target chromosomal regions related to cancer or a chromosomal abnormality in a gestating fetus. Finally the method may use knowledge about chromosome crossover locations or a best fit algorithm for the analysis. The compositions may comprise more than 200 primers located within haplotype blocks known to show CNV.Type: ApplicationFiled: February 14, 2024Publication date: September 12, 2024Applicant: Natera, Inc.Inventors: Huseyin Eser KIRKIZLAR, Raheleh SALARI, Stymir SIGURJONSSON, Bernhard ZIMMERMANN, Allison RYAN, Naresh VANKAYALAPATI
-
Publication number: 20240271214Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: March 28, 2024Publication date: August 15, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, Matthew Micah HILL, Bernhard ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Patent number: 12020778Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: GrantFiled: March 22, 2019Date of Patent: June 25, 2024Assignee: Natera, Inc.Inventors: Matthew Rabinowitz, George Gemelos, Milena Banjevic, Allison Ryan, Zachary Demko, Matthew Hill, Bernhard Zimmermann, Johan Baner
-
Publication number: 20240185957Abstract: Disclosed herein is a system and method for making allele calls, and for determining the ploidy state, in one or a small set of cells, or where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed and the haplotypes are determined using expected similarities between the target genome and the knowledge of the genomes of genetically related individuals. In one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the genetic data from both parents, and possibly one or more sperm and/or sibling embryos. In another embodiment, the chromosome copy number can be determined using the same input data. In another embodiment, these determinations are made for embryo selection during IVF, for non-invasive prenatal diagnosis, or for making phenotypic predictions.Type: ApplicationFiled: September 25, 2023Publication date: June 6, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Joshua SWEETKIND-SINGER
-
Patent number: 11946101Abstract: The invention provides improved methods, compositions, and kits for detecting ploidy of chromosome regions, e.g. for detecting cancer or a chromosomal abnormality in a gestating fetus. The methods can utilize a set of more than 200 SNPs that are found within haploblocks and can include analyzing a series of target chromosomal regions related to cancer or a chromosomal abnormality in a gestating fetus. Finally the method may use knowledge about chromosome crossover locations or a best fit algorithm for the analysis. The compositions may comprise more than 200 primers located within haplotype blocks known to show CNV.Type: GrantFiled: June 21, 2022Date of Patent: April 2, 2024Assignee: Natera, Inc.Inventors: Huseyin Eser Kirkizlar, Raheleh Salari, Styrmir Sigurjonsson, Bernhard Zimmermann, Allison Ryan, Naresh Vankayalapati
-
Publication number: 20240068031Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: September 7, 2023Publication date: February 29, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, Matthew HILL, Bernhard ZIMMERMANN, George GEMELOS, Johan BANER, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240060124Abstract: Methods for non-invasive prenatal paternity testing are disclosed herein. The method uses genetic measurements made on plasma taken from a pregnant mother, along with genetic measurements of the alleged father, and genetic measurements of the mother, to determine whether or not the alleged father is the biological father of the fetus. This is accomplished by way of an informatics based method that can compare the genetic fingerprint of the fetal DNA found in maternal plasma to the genetic fingerprint of the alleged father.Type: ApplicationFiled: July 28, 2023Publication date: February 22, 2024Applicant: Natera, Inc.Inventors: Allison Ryan, Styrmir Sigurjonsson, Milena Banjevic, George Gemelos, Matthew Hill, Johan Baner, Matthew Rabinowitz, Zachary Demko
-
Publication number: 20240062846Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: September 21, 2023Publication date: February 22, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew HILL, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20240038328Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: September 21, 2023Publication date: February 1, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew HILL, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20230420071Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: September 7, 2023Publication date: December 28, 2023Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew HILL, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20230383348Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: March 24, 2023Publication date: November 30, 2023Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, Matthew HILL, Bernhard ZIMMERMANN, George GEMELOS, Johan BANER, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20230368865Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: July 27, 2023Publication date: November 16, 2023Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew HILL, Bernhard ZIMMERMANN, Johan BANER