Patents by Inventor Alok Maskara

Alok Maskara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6645878
    Abstract: This invention has enabled a new, simple thin film nanoporous dielectric fabrication method. In general, this invention uses glycerol, or another low volatility compound, as a solvent. This new method allows thin film aerogels/low density xerogels to be made without supercritical drying, freeze drying, or a surface modification step before drying. Thus, this invention allows production of nanoporous dielectrics at room temperature and atmospheric pressure, without a separate surface modification step. Although this new method allows fabrication of aerogels without substantial pore collapse during drying, there may be some permanent shrinkage during aging and/or drying. This invention allows controlled porosity thin film nanoporous aerogels to be deposited, gelled, aged, and dried without atmospheric controls.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: November 11, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Richard A. Stoltz, Alok Maskara, Teresa Ramos, Shin-Puu Jeng, Bruce E. Gnade
  • Publication number: 20030022524
    Abstract: This invention has enabled a new, simple thin film nanoporous dielectric fabrication method. In general, this invention uses glycerol, or another low volatility compound, as a solvent. This new method allows thin film aerogels/low density xerogels to be made without supercritical drying, freeze drying, or a surface modification step before drying. Prior art aerogels have required at least one of these steps to prevent substantial pore collapse during drying. Thus, this invention allows production of nanoporous dielectrics at room temperature and atmospheric pressure, without a separate surface modification step. In general, this new method is compatible with most prior art aerogel techniques. Although this new method allows fabrication of aerogels without substantial pore collapse during drying, there may be some permanent shrinkage during aging and/or drying. This invention allows controlled porosity thin film nanoporous aerogels to be deposited, gelled, aged, and dried without atmospheric controls.
    Type: Application
    Filed: April 30, 2002
    Publication date: January 30, 2003
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Richard A. Stoltz, Alok Maskara, Teresa Ramos, Shin-Puu Jeng, Bruce E. Gnade
  • Patent number: 6485805
    Abstract: The present invention is an insulating composite comprising (a) a first thermally reflective layer having a reflective surface and an opposing surface and (b) silica aerogel granules. The present invention further includes an insulating element in which the insulating composite is disposed within an air-impermeable container.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: November 26, 2002
    Assignee: Cabot Corporation
    Inventors: Douglas Michael Smith, R. Ulrich Boes, Alok Maskara
  • Patent number: 6440381
    Abstract: A continuous process for the conversion of sodium silicate to silicic acid, wherein a moving bed of a protonated ion exchange resin is contacted with an inlet stream of sodium silicate to provide an outlet stream of silicic acid. The outlet stream of silicic acid produced thereby can be processed into a variety of silica products. The outlet moving bed of spent sodium-enriched ion-exchange resin is continuously regenerated into protonated ion-exchange resin by contacting the spent resin with an inlet stream of acid of sufficient strength to exchange the sodium ions in the spent resin with a proton. The regenerated protonated ion-exchange resin is continuously recycled back into the sodium silicate stream for further production of silicic acid.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: August 27, 2002
    Assignee: Cabot Corporation
    Inventors: Douglas M. Smith, Kevin H. Roderick, Alok Maskara, Kenneth C. Koehlert
  • Patent number: 6380105
    Abstract: This invention has enabled a new, simple thin film nanoporous dielectric fabrication method. In general, this invention uses glycerol, or another low volatility compound, as a solvent. This new method allows thin film aerogels/low density xerogels to be made without supercritical drying, freeze drying, or a surface modification step before drying. Thus, this invention allows production of nanoporous dielectrics at room temperature and atmospheric pressure, without a separate surface modification step. Although this new method allows fabrication of aerogels without substantial pore collapse during drying, there may be some permanent shrinkage during aging and/or drying. This invention allows controlled porosity thin film nanoporous aerogels to be deposited, gelled, aged, and dried without atmospheric controls.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: April 30, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Richard A. Stoltz, Alok Maskara, Teresa Ramos, Shin-Puu Jeng, Bruce E. Gnade
  • Patent number: 6159540
    Abstract: The present invention provides a method of treating silica wherein silica is reacted with a di- or tri-functional organosilane in an aqueous acid medium to provide a crude organosilane-capped silica product containing organosilicon impurities. The organosilicon impurities are extracted from the crude product with an organic liquid to provide a purified product consisting essentially of organosilane-capped silica. The purified product is dried to provide a dry organosilane-capped silica. The aqueous acid medium can include a displacing reagent which displaces at least one reactive functional group of the di- or tri-functional organosilane. The present invention further provides-continuous methods of treating silica with di- and tri-functional organosilanes, wherein the organic liquid and/or the organosilicon impurities are recycled and reused.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: December 12, 2000
    Assignee: Cabot Corporation
    Inventors: Vinayan C. Menon, Stephen Wallace, Alok Maskara, Douglas M. Smith, Kenneth C. Koehlert
  • Patent number: 6159295
    Abstract: An apparatus and method for forming thin film aerogels on semiconductor substrates is disclosed. It has been found that in order to produce defect-free nanoporous dielectrics with a controllable high porosity, it is preferable to substantially limit evaporation and condensation of pore fluid in the wet gel thin film, e.g. during gelation, during aging, and at other points prior to obtaining a dried gel. The present invention simplifies the atmospheric control needed to prevent evaporation and condensation by restricting the atmosphere in contact with the wet gel thin film to an extremely small volume. In one embodiment, a substrate 26 is held between a substrate holder 36 and a parallel plate 22, such that a substantially sealed chamber 32 exists between substrate surface 28 and chamber surface 30. Preferably, the average clearance between surfaces 28 and 30 is less than 5 mm, or more preferably, less than 1 mm. Temperature control means 34 may optionally be used to control the temperature in chamber 32.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: December 12, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Alok Maskara, Teresa Ramos, Douglas M. Smith
  • Patent number: 5955140
    Abstract: This invention has enabled a new, simple thin film nanoporous dielectric fabrication method. In general, this invention uses glycerol, or another low volatility compound, as a solvent. This new method allows thin film aerogels/low density xerogels to be made without supercritical drying, freeze drying, or a surface modification step before drying. Thus, this invention allows production of nanoporous dielectrics at room temperature and atmospheric pressure, without a separate surface modification step. Although this new method allows fabrication of aerogels without substantial pore collapse during drying, there may be some permanent shrinkage during aging and/or drying. This invention allows controlled porosity thin film nanoporous aerogels to be deposited, gelled, aged, and dried without atmospheric controls.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: September 21, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Richard A. Stoltz, Alok Maskara, Teresa Ramos, Shin-Puu Jeng, Bruce E. Gnade
  • Patent number: 5877100
    Abstract: The present invention relates to particulate compositions having improved thermal conductivity values. An embodiment of the present invention is a particulate composition which under a 103421 Pa load, at 20.degree. C., and at a pressure (P) within the range of 133.322-13332.2 Pa, in Nitrogen, has: a packing density of less than or equal to 160 kg/m3, and a Thermal Conductivity (TC) at 133.322-1333.22 Pa of less than or equal to (0.260 lnP+4.53) milliWatt/meterK (mW/m.multidot.K) and a TC at 1333.22-13332.2 Pa of less than or equal to (0.824 lnP+0.47) mW/m.multidot.K. A preferred particulate composition is a gel composition. Also disclosed are insulation bodies comprising the particulate compositions.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: March 2, 1999
    Assignee: Cabot Corporation
    Inventors: Douglas M. Smith, William C. Ackerman, Alok Maskara