Patents by Inventor Alok S. Sathaye

Alok S. Sathaye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130197594
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: March 13, 2013
    Publication date: August 1, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Patent number: 8442635
    Abstract: This document discusses, among other things, systems and methods for automatic electrode integrity management. Interelectrode impedance is measured for various electrode combinations of an implantable cardiac function management device. The impedance data is processed, such as at an external remote server, to determine whether an electrode is failing or has failed, to select an alternate electrode configuration, to alert a physician or patient, to predict a time-to-failure such as by using population data, or to reprogram electrode configuration or other device parameters of the implantable cardiac function management device.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 14, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Derek D. Bohn, M. Jason Brooke, Rajesh K. Gandhi, Alok S. Sathaye, Aaron R. McCabe
  • Patent number: 8406876
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Publication number: 20120323291
    Abstract: Approaches for selecting an electrode combination of multi-electrode pacing devices are described. Electrode combination parameters that support cardiac function consistent with a prescribed therapy are evaluated for each of a plurality of electrode combinations. Electrode combination parameters that do not support cardiac function are evaluated for each of the plurality of electrode combinations. An order is determined for the electrode combinations based on the parameter evaluations. An electrode combination is selected based on the order, and therapy is delivered using the selected electrode combination.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 20, 2012
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Alok S. Sathaye, M. Jason Brooke, Bruce A. Tockman
  • Patent number: 8265736
    Abstract: Approaches for selecting an electrode combination of multi-electrode pacing devices are described. Electrode combination parameters that support cardiac function consistent with a prescribed therapy are evaluated for each of a plurality of electrode combinations. Electrode combination parameters that do not support cardiac function are evaluated for each of the plurality of electrode combinations. An order is determined for the electrode combinations based on the parameter evaluations. An electrode combination is selected based on the order, and therapy is delivered using the selected electrode combination.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: September 11, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alok S. Sathaye, M. Jason Brooke, Bruce A. Tockman
  • Patent number: 8209013
    Abstract: Energy parameters for electrical stimulation pulses that produce a desired activation, and avoid an undesirable activation, are determined. A strength-duration relationship for at least one desired activation produced by therapeutic electrical stimulation is measured. A strength-duration relationship for at least one undesirable activation produced by the therapeutic electrical stimulation is provided. A medical device selects, based on the desired and undesirable strength-duration relationships, one or more energy parameters for the therapeutic electrical stimulation that produce the desired activation and avoid the undesirable activation.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: June 26, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: M. Jason Brooke, Alok S. Sathaye, Yanting Dong, Scott Walczak
  • Patent number: 8185202
    Abstract: Methods and devices for reducing phrenic nerve stimulation of cardiac pacing systems involve delivering a pacing pulse to a ventricle of a heart. A transthoracic impedance signal is sensed, and a deviation in the signal resulting from the pacing pulse may be used to determine phrenic nerve stimulation. Methods may further involve detecting the phrenic nerve stimulation from the pacing pulse by delivering two or more pacing pulse to the ventricle of the heart, and determining a temporal relationship. A pacing vector may be selected from the two or more vectors that effects cardiac capture and reduces the phrenic nerve stimulation. A pacing voltage and/or pulse width may be selected that provides cardiac capture and reduces the phrenic nerve stimulation. In other embodiments, a pacing pulse width and a pacing voltage may be selected from a patient's strength-duration curve that effects cardiac capture and reduces the phrenic nerve stimulation.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: May 22, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Alok S. Sathaye
  • Publication number: 20110224751
    Abstract: A methods and devices for capture detection are based on sensing a propagated depolarization from a contralateral cardiac chamber. An intersite sensing interval is determined based on an intersite pacing delay and an intersite conduction delay associated with first and second pacing sites. Pacing pulses are delivered to the first pacing site and the second pacing site, the pacing pulses separated in time by the intersite pacing delay. An intersite sensing interval is timed. The process includes sensing, during the intersite sensing interval, at the first pacing site for a depolarization propagated to the first pacing site from the second pacing site. It a depolarization propagated from the second pacing site is not sensed, then capture of the first and second pacing sites is detected.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 15, 2011
    Inventors: Alok S. Sathaye, M. Jason Brooke, Scott A. Meyer
  • Publication number: 20110144713
    Abstract: This document discusses, among other things, systems and methods for automatic electrode integrity management. Interelectrode impedance is measured for various electrode combinations of an implantable cardiac function management device. The impedance data is processed, such as at an external remote server, to determine whether an electrode is failing or has failed, to select an alternate electrode configuration, to alert a physician or patient, to predict a time-to-failure such as by using population data, or to reprogram electrode configuration or other device parameters of the implantable cardiac function management device.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Inventors: Derek D. Bohn, M. Jason Brooke, Rajesh Krishan Gandhi, Alok S. Sathaye, Aaron McCabe
  • Patent number: 7941219
    Abstract: A methods and devices for capture detection are based on sensing a propagated depolarization from a contralateral cardiac chamber. An intersite sensing interval is determined based on an intersite pacing delay and an intersite conduction delay associated with first and second pacing sites. Pacing pulses are delivered to the first pacing site and the second pacing site, the pacing pulses separated in time by the intersite pacing delay. An intersite sensing interval is timed. The process includes sensing, during the intersite sensing interval, at the first pacing site for a depolarization propagated to the first pacing site from the second pacing site. It a depolarization propagated from the second pacing site is not sensed, then capture of the first and second pacing sites is detected.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: May 10, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alok S. Sathaye, M. Jason Brooke, Scott A. Meyer
  • Publication number: 20110106199
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Inventors: Aaron McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Patent number: 7933651
    Abstract: Cardiac treatment methods and devices provide for templates representative of past tachyarrhythmia events, each template associated with a therapy. Methods involve providing a cardiac waveform representative of a patient's cardiac activity and identifying a portion that indicates an arrhythmic event. A cardiac template corresponding to the portion is generated, and a therapy is associated with the template useful for treating a subsequent arrhythmia. The waveform portion may be identified by a physician using a patient-external device to display the cardiac waveform. The template may be generated by a physician selecting the cardiac waveform, and determining if the therapy associated with the template was satisfactory and/or effective in treating the arrhythmia. Identification may involve matching the event to templates generated using cardiac waveforms other than the patient's cardiac waveforms.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 26, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shelley Marie Cazares, Yayun Lin, Alok S. Sathaye
  • Patent number: 7899535
    Abstract: This document discusses, among other things, systems and methods for automatic electrode integrity management. Interelectrode impedance is measured for various electrode combinations of an implantable cardiac function management device. The impedance data is processed, such as at an external remote server, to determine whether an electrode is failing or has failed, to select an alternate electrode configuration, to alert a physician or patient, to predict a time-to-failure such as by using population data, or to reprogram electrode configuration or other device parameters of the implantable cardiac function management device.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: March 1, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Derek D. Bohn, M. Jason Brooke, Rajesh Krishan Gandhi, Alok S. Sathaye, Aaron McCabe
  • Patent number: 7873413
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: January 18, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Publication number: 20100121399
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 13, 2010
    Inventors: Aaron McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Patent number: 7680536
    Abstract: Approaches for estimating capture thresholds for alternate pacing vectors of multi-electrode pacing devices are described. Capture thresholds of at least one initial pacing vector is measured. The impedance of the initial pacing vector and at least one alternate pacing vector is measured. The initial and alternate pacing vectors have an electrode in common. The common electrode has the same polarity in both the initial and the alternate pacing vectors. The capture threshold for the alternate pacing vector may be estimated based on the measured capture threshold of the initial pacing vector, the measured the impedance of the initial pacing vector, and the measured impedance of the alternate pacing vector.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: March 16, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alok S. Sathaye, Jason M. Brooke
  • Publication number: 20090043351
    Abstract: Approaches for selecting an electrode combination of multi-electrode pacing devices are described. Electrode combination parameters that support cardiac function consistent with a prescribed therapy are evaluated for each of a plurality of electrode combinations. Electrode combination parameters that do not support cardiac function are evaluated for each of the plurality of electrode combinations. An order is determined for the electrode combinations based on the parameter evaluations. An electrode combination is selected based on the order, and therapy is delivered using the selected electrode combination.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Inventors: Alok S. Sathaye, M. Jason Brooke, Bruce A. Tockman
  • Publication number: 20080300644
    Abstract: Methods and devices for reducing phrenic nerve stimulation of cardiac pacing systems involve delivering a pacing pulse to a ventricle of a heart. A transthoracic impedance signal is sensed, and a deviation in the signal resulting from the pacing pulse may be used to determine phrenic nerve stimulation. Methods may further involve detecting the phrenic nerve stimulation from the pacing pulse by delivering two or more pacing pulse to the ventricle of the heart, and determining a temporal relationship. A pacing vector may be selected from the two or more vectors that effects cardiac capture and reduces the phrenic nerve stimulation. A pacing voltage and/or pulse width may be selected that provides cardiac capture and reduces the phrenic nerve stimulation. In other embodiments, a pacing pulse width and a pacing voltage may be selected from a patient's strength-duration curve that effects cardiac capture and reduces the phrenic nerve stimulation.
    Type: Application
    Filed: May 22, 2008
    Publication date: December 4, 2008
    Inventor: Alok S. Sathaye
  • Publication number: 20080294215
    Abstract: Methods and devices for reducing phrenic nerve stimulation of cardiac pacing systems involve delivering a pacing pulse to a ventricle of a heart. A transthoracic impedance signal is sensed, and a deviation in the signal resulting from the pacing pulse may be used to determine phrenic nerve stimulation. Methods may further involve detecting the phrenic nerve stimulation from the pacing pulse by delivering two or more pacing pulse to the ventricle of the heart, and determining a temporal relationship. A pacing vector may be selected from the two or more vectors that effects cardiac capture and reduces the phrenic nerve stimulation. A pacing voltage and/or pulse width may be selected that provides cardiac capture and reduces the phrenic nerve stimulation. In other embodiments, a pacing pulse width and a pacing voltage may be selected from a patient's strength-duration curve that effects cardiac capture and reduces the phrenic nerve stimulation.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Inventor: Alok S. Sathaye
  • Publication number: 20080294228
    Abstract: A device and method for controllably augmenting the flow of lymphatic fluid through one or more lymphatic vessels. The device may utilize various means of modulating the flow of lymph, including neural, mechanical and/or chemical stimulation and could be a stand-alone device or be incorporated into any cardiac, neuromodulation and/or drug delivery device.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 27, 2008
    Applicant: Cardiac Pacemakers
    Inventors: M. Jason Brooke, Allan C. Shuros, Robert J. Sweeney, Alok S. Sathaye