Patents by Inventor Alongkarn Chutinan

Alongkarn Chutinan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9139917
    Abstract: A nanocomposite material that is both transparent and electrically conductive is provided. The nanocomposite comprises a nanoporous matrix, preferably formed from nanoparticles, that is internally coated with a transparent conductive material to define an internal conductive path within the nanocomposite. The nanocomposite is substantially transparent over a defined spectral range that preferably includes at least a portion of the visible spectrum, and preferably comprises pores with a mean diameter of less than approximately 25 nm. A bilayer may be formed by depositing a layer of a transparent conductive material on top of a nanocomposite layer, or by depositing a second layer of a nanocomposite having different optical properties. The nanocomposites formed using a combination of sequential and/or concurrent deposition techniques are correspondingly discrete and/or continuously varying structures.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: September 22, 2015
    Inventors: Paul Gregory O'Brien, Daniel P. Puzzo, Nazir Pyarali Kherani, Geoffrey Alan Ozin, Alongkarn Chutinan, Zheng-Hong Lu, Michael G. Helander
  • Publication number: 20120305061
    Abstract: A nanocomposite material that is both transparent and electrically conductive is provided. The nanocomposite comprises a nanoporous matrix, preferably formed from nanoparticles, that is internally coated with a transparent conductive material to define an internal conductive path within the nanocomposite. The nanocomposite is substantially transparent over a defined spectral range that preferably includes at least a portion of the visible spectrum, and preferably comprises pores with a mean diameter of less than approximately 25 nm. A bilayer may be formed by depositing a layer of a transparent conductive material on top of a nanocomposite layer, or by depositing a second layer of a nanocomposite having different optical properties. The nanocomposites formed using a combination of sequential and/or concurrent deposition techniques are correspondingly discrete and/or continuously varying structures.
    Type: Application
    Filed: October 15, 2010
    Publication date: December 6, 2012
    Inventors: Paul Gregory O'Brien, Daniel P. Puzzo, Nazir Pyarali Kherani, Geoffrey Alan Ozin, Alongkarn Chutinan, Zheng-Hong Lu, Michael G. Helander
  • Patent number: 6738551
    Abstract: In a 2D photonic crystal waveguide comprising a 2D photonic crystal structure based on a slab (11) formed of a material having a higher refractive index than air, in which a material (16) having a lower refractive index than the slab material is periodically arrayed to provide a refractive index distribution, a photonic crystal waveguide is created by forming a line defect (12), which functions as a waveguide, in the periodic array of photonic crystal, and at least one point defect (14) is disposed adjacent the photonic crystal waveguide to act as a disorder in the periodic array of photonic crystal. The point defect functions as a light or electromagnetic radiation outlet/inlet port for trapping light or electromagnetic radiation of a selected wavelength among light or electromagnetic radiation propagating through the waveguide and radiating it, or trapping light or electromagnetic radiation of a selected wavelength from the exterior and introducing it into the waveguide.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: May 18, 2004
    Assignee: Kansai Technology Licensing Organization Co., Ltd.
    Inventors: Susumu Noda, Alongkarn Chutinan, Daisuke Miyauchi, Yoshikazu Narumiya
  • Publication number: 20020009277
    Abstract: In a 2D photonic crystal waveguide comprising a 2D photonic crystal structure based on a slab (11) formed of a material having a higher refractive index than air, in which a material (16) having a lower refractive index than the slab material is periodically arrayed to provide a refractive index distribution, a photonic crystal waveguide is created by forming a line defect (12), which functions as a waveguide, in the periodic array of photonic crystal, and at least one point defect (14) is disposed adjacent the photonic crystal waveguide to act as a disorder in the periodic array of photonic crystal. The point defect functions as a light or electromagnetic radiation outlet/inlet port for trapping light or electromagnetic radiation of a selected wavelength among light or electromagnetic radiation propagating through the waveguide and radiating it, or trapping light or electromagnetic radiation of a selected wavelength from the exterior and introducing it into the waveguide.
    Type: Application
    Filed: March 23, 2001
    Publication date: January 24, 2002
    Applicant: TDK CORPORATION
    Inventors: Susumu Noda, Alongkarn Chutinan, Daisuke Miyauchi, Yoshikazu Narumiya