Patents by Inventor Alranzo Boh Ruffin

Alranzo Boh Ruffin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240116140
    Abstract: A method of processing a transparent workpiece comprises directing a defect-forming laser beam to an impingement surface of a transparent workpiece, the defect-forming laser beam having a numerical aperture from 0.10 to 0.25, the transparent workpiece having a textured surface, the textured surface having an Ra value of greater than or equal to 0.5 ?m.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 11, 2024
    Inventors: Sterling Michael Clarke, Reinhard Moritz Malchus, Sasha Marjanovic, Garrett Andrew Piech, Alranzo Boh Ruffin, Sergio Tsuda
  • Publication number: 20230025312
    Abstract: A method of marking an optical fiber that includes directing a laser beam onto a first colored layer of an optical fiber. The optical fiber includes a core and a cladding surrounding the core, the first colored layer surrounds the cladding, and the laser beam modifies the first colored layer to form one or more laser-modified regions along an outer surface of the first colored layer.
    Type: Application
    Filed: July 18, 2022
    Publication date: January 26, 2023
    Inventors: Andres Covarrubias Jaramillo, John Randolph Phillips, Alranzo Boh Ruffin, Sergio Tsuda
  • Publication number: 20220397719
    Abstract: An article includes an optical transforming layer and a guide region positioned inside and adjacent to at least a portion of a perimeter of the optical transforming layer. The guide region comprises an inlet end positioned adjacent to a first surface of the optical transforming layer and an outlet end positioned adjacent a second surface of the optical transforming layer. The guide region propagates light from the inlet end to the outlet end such that the light is directed from the first surface to the second surface. The guide region includes a phase-separated glass comprising a continuous network phase and a discontinuous phase. A relative difference in index of refraction between the continuous network phase and the discontinuous phase is greater than or equal to 0.3%. The discontinuous phase comprises elongated shaped regions aligned along a common axis and having an aspect ratio greater than or equal to 10:1.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 15, 2022
    Inventors: Nicholas Francis Borrelli, Ming-Jun Li, Xiao Li, David John McEnroe, Robert Adam Modavis, Daniel Aloysius Nolan, Alranzo Boh Ruffin, Vitor Marino Schneider, Thomas Philip Seward, III, Alexander Mikhailovich Streltsov
  • Publication number: 20220073401
    Abstract: A method for processing a transparent workpiece includes directing a laser beam oriented along a beam pathway through an aspheric optical element and the transparent workpiece. The laser beam impinges the aspheric optical element radially offset from a centerline axis of the aspheric optical element by an offset distance of 30% the 1/e2 diameter of the laser beam or greater. The beam pathway and the transparent workpiece are tilted relative to one another such that the beam pathway has a beam pathway angle of less than 90° relative to an impingement surface at the impingement surface and a portion of the laser beam directed into the transparent workpiece is a laser beam focal line having an internal focal line angle of less than 80° relative to the impingement surface, such that a defect with a defect angle of less than 80° is formed by induced absorption within the transparent workpiece.
    Type: Application
    Filed: August 20, 2021
    Publication date: March 10, 2022
    Inventors: Michael Peter Gaj, Garrett Andrew Piech, Alranzo Boh Ruffin, Mark Christian Sanson, Mark Ranney Westcott
  • Publication number: 20210283713
    Abstract: A method for processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece such that a portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece, thereby forming a damage line within the transparent workpiece, and the portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, a spot size wo, and a Rayleigh range ZR that is greater than F D ? ? ? w 0 , 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. Further, the method for processing the transparent workpiece includes etching the transparent workpiece with an etching vapor to remove at least a portion of the transparent workpiece along the damage line, thereby forming an aperture extending through the at least a portion of the thickness of the transparent workpiece.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 16, 2021
    Inventors: Heather Debra Boek, Andreas Simon Gaab, Garrett Andrew Piech, Alranzo Boh Ruffin, Daniel Arthur Sternquist, Michael Brian Webb
  • Patent number: 11052481
    Abstract: A method for processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece such that a portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece, thereby forming a damage line within the transparent workpiece, and the portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, a spot size w0, and a Rayleigh range ZR that is greater than F D ? ? ? w 0 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. Further, the method for processing the transparent workpiece includes etching the transparent workpiece with an etching vapor to remove at least a portion of the transparent workpiece along the damage line, thereby forming an aperture extending through the at least a portion of the thickness of the transparent workpiece.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: July 6, 2021
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Andreas Simon Gaab, Garrett Andrew Piech, Alranzo Boh Ruffin, Daniel Arthur Sternquist, Michael Brian Webb
  • Patent number: 11001523
    Abstract: Strengthened glass articles having laser etched features, electronic devices, and methods of fabricating etched features in strengthened glass articles are disclosed. In one embodiment, a strengthened glass article includes a first strengthened surface layer and a second strengthened surface layer under a compressive stress and extending from a first surface and a second surface, respectively, of the strengthened glass article to a depth of layer, and a central region between the first strengthened surface layer and the second strengthened surface layer that is under tensile stress. The strengthened glass article further includes at least one etched feature formed by laser ablation within the first surface or the second surface having a depth that is less than the depth of layer and a surface roughness that is greater than a surface roughness of the first surface or second surface outside of the at least one etched feature.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: May 11, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Johannes Moll, James Joseph Price, Alranzo Boh Ruffin, Sergio Tsuda, Robert Stephen Wagner, James Joseph Watkins
  • Publication number: 20200254557
    Abstract: A method for processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece such that a portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece, thereby forming a damage line within the transparent workpiece, and the portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, a spot size w0, and a Rayleigh range ZR that is greater than F D ? ? ? w 0 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. Further, the method for processing the transparent workpiece includes etching the transparent workpiece with an etching vapor to remove at least a portion of the transparent workpiece along the damage line, thereby forming an aperture extending through the at least a portion of the thickness of the transparent workpiece.
    Type: Application
    Filed: January 29, 2020
    Publication date: August 13, 2020
    Inventors: Heather Debra Boek, Andreas Simon Gaab, Garrett Andrew Piech, Alranzo Boh Ruffin, Daniel Arthur Sternquist, Michael Brian Webb
  • Patent number: 10116035
    Abstract: An electrically conductive article that includes a monolithic glass body having a first primary surface; and an electrically conducting element formed in the body. The element includes a discrete layer, or a plurality of discrete layers, of metallic silver. Each layer has a thickness T such that 0.1 ?m?T?0.5 ?m and an electrical resistivity of about 50 n?·m to about 2000 n?·m. In addition, the element is spaced apart from the first primary surface by a distance D, wherein 0.1 ?m?D?20 ?m. In some aspects, the electrically conducting element and/or the monolithic glass body are configured as an antenna assembly, an optical fiber or a flexible glass substrate.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: October 30, 2018
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Anthony Ng'oma, Alranzo Boh Ruffin, Joseph Francis Schroeder, III, Dean Michael Thelen
  • Patent number: 10110305
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 23, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Publication number: 20180186693
    Abstract: Strengthened glass articles having laser etched features, electronic devices, and methods of fabricating etched features in strengthened glass articles are disclosed. In one embodiment, a strengthened glass article includes a first strengthened surface layer and a second strengthened surface layer under a compressive stress and extending from a first surface and a second surface, respectively, of the strengthened glass article to a depth of layer, and a central region between the first strengthened surface layer and the second strengthened surface layer that is under tensile stress. The strengthened glass article further includes at least one etched feature formed by laser ablation within the first surface or the second surface having a depth that is less than the depth of layer and a surface roughness that is greater than a surface roughness of the first surface or second surface outside of the at least one etched feature.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: Johannes Moll, James Joseph Price, Alranzo Boh Ruffin, Sergio Tsuda, Robert Stephen Wagner, James Joseph Watkins
  • Patent number: 9938186
    Abstract: Strengthened glass articles having laser etched features, electronic devices, and methods of fabricating etched features in strengthened glass articles are disclosed. In one embodiment, a strengthened glass article includes a first strengthened surface layer and a second strengthened surface layer under a compressive stress and extending from a first surface and a second surface, respectively, of the strengthened glass article to a depth of layer, and a central region between the first strengthened surface layer and the second strengthened surface layer that is under tensile stress. The strengthened glass article further includes at least one etched feature formed by laser ablation within the first surface or the second surface having a depth that is less than the depth of layer and a surface roughness that is greater than a surface roughness of the first surface or second surface outside of the at least one etched feature.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 10, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Johannes Moll, James Joseph Price, Alranzo Boh Ruffin, Sergio Tsuda, Robert Stephen Wagner, James Joseph Watkins
  • Publication number: 20180062743
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Application
    Filed: October 23, 2017
    Publication date: March 1, 2018
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Patent number: 9800339
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: October 24, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Patent number: 9704422
    Abstract: An illuminated color displaying device having at least one light diffusing waveguide coupled to a plurality of different light sources emitting light at different wavelengths, to provide color modulation.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: July 11, 2017
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Alranzo Boh Ruffin
  • Publication number: 20170163341
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Patent number: 9602209
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: March 21, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Publication number: 20160322694
    Abstract: An electrically conductive article that includes a monolithic glass body having a first primary surface; and an electrically conducting element formed in the body. The element includes a discrete layer, or a plurality of discrete layers, of metallic silver. Each layer has a thickness T such that 0.1 ?m?T?0.5 ?m and an electrical resistivity of about 50 n?·m to about 2000 n?·m. In addition, the element is spaced apart from the first primary surface by a distance D, wherein 0.1 ?m?D?20 ?m. In some aspects, the electrically conducting element and/or the monolithic glass body are configured as an antenna assembly, an optical fiber or a flexible glass substrate.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 3, 2016
    Inventors: Nicholas Francis Borrelli, Anthony Ng'oma, Alranzo Boh Ruffin, Joseph Francis Schroeder, III, Dean Michael Thelen
  • Publication number: 20160080085
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Patent number: 9219546
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: December 22, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer