Patents by Inventor Altug Oz

Altug Oz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7749792
    Abstract: The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 ?m, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: July 6, 2010
    Assignee: Carnegie Mellon University
    Inventors: Gary K. Fedder, Altug Oz
  • Publication number: 20070103029
    Abstract: The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 ?m, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam.
    Type: Application
    Filed: June 2, 2004
    Publication date: May 10, 2007
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary Fedder, Altug Oz