Patents by Inventor Alvin J. Joseph

Alvin J. Joseph has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110121369
    Abstract: An integrated circuit (IC) includes a fin field effect transistor (FinFET) radio frequency (RF) switch; and a planar complementary metal-oxide semiconductor field effect transistor (MOSFET). The planar MOSFET has a channel on a <100> wafer plane and the FinFET RF switch has a channel on a <100> fin plane. The FinFET RF switch and the planar MOSFET can be oriented at approximately 45° with respect to one another.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Alvin J. Joseph, Edward J. Nowak
  • Patent number: 7932155
    Abstract: A method of forming a semiconductor device having two different strains therein is provided. The method includes forming a strain in a first region with a first straining film, and forming a second strain in a second region with a second straining film. Either of the first or second strains may be either tensile or compressive. Additionally the strains may be formed at right angles to one another and may be additionally formed in the same region. In particular a vertical tensile strain may be formed in a base and collector region of an NPN bipolar transistor and a horizontal compressive strain may be formed in the extrinsic base region of the NPN bipolar transistor. A PNP bipolar transistor may be formed with a compression strain in the base and collector region in the vertical direction and a tensile strain in the extrinsic base region in the horizontal direction.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, David L. Harame, Jeffrey B. Johnson, Alvin J. Joseph
  • Patent number: 7932541
    Abstract: Disclosed are embodiments of a hetero-junction bipolar transistor (HBT) structure and method of forming the structure that provides substantially lower collector-to-base parasitic capacitance and collector resistance, while also lowering or maintaining base-to-emitter capacitance, emitter resistance and base resistance in order to achieve frequency capabilities in the THz range. The HBT is a collector-up HBT in which a dielectric layer and optional sidewall spacers separate the raised extrinsic base and the collector so as to reduce collector-to-base capacitance. A lower portion of the collector is single crystalline semiconductor so as to reduce collector resistance. The raised extrinsic base and the intrinsic base are stacked single crystalline epitaxial layers, where link-up is automatic and self-aligned, so as to reduce base resistance. The emitter is a heavily doped region below the top surface of a single crystalline semiconductor substrate so as to reduce emitter resistance.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Alvin J. Joseph, Andreas D. Stricker
  • Patent number: 7927963
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brennan J. Brown, James R. Elliott, Alvin J. Joseph, Edward J. Nowak
  • Publication number: 20110049676
    Abstract: A method, structure, and design structure for a through-silicon-via Wilkinson power divider. A method includes: forming an input on a first side of a substrate; forming a first leg comprising a first through-silicon-via formed in the substrate, wherein the first leg electrically connects the input and a first output; forming a second leg comprising a second through-silicon-via formed in the substrate, wherein the second leg electrically connects the input and a second output, and forming a resistor electrically connected between the first output and the second output.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi DING, Alvin J. JOSEPH, Wayne H. WOODS, JR.
  • Patent number: 7898061
    Abstract: A method of forming a semiconductor device having two different strains therein is provided. The method includes forming a strain in a first region with a first straining film, and forming a second strain in a second region with a second straining film. Either of the first or second strains may be either tensile or compressive. Additionally the strains may be formed at right angles to one another and may be additionally formed in the same region. In particular a vertical tensile strain may be formed in a base and collector region of an NPN bipolar transistor and a horizontal compressive strain may be formed in the extrinsic base region of the NPN bipolar transistor. A PNP bipolar transistor may be formed with a compression strain in the base and collector region in the vertical direction and a tensile strain in the extrinsic base region in the horizontal direction.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, David L. Harame, Jeffrey B. Johnson, Alvin J. Joseph
  • Publication number: 20110037096
    Abstract: Semiconductor structures and methods of manufacture semiconductors are provided which relate to heterojunction bipolar transistors. The method includes forming two devices connected by metal wires on a same wiring level. The metal wire of a first of the two devices is formed by selectively forming a metal cap layer on copper wiring structures.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James S. DUNN, Alvin J. JOSEPH, Anthony K. STAMPER
  • Publication number: 20100244934
    Abstract: At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Publication number: 20100248432
    Abstract: Methods of forming hyper-abrupt p-n junctions and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt p-n junction.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINE CORPORATION
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Patent number: 7804151
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brennan J. Brown, James R. Elliott, Alvin J. Joseph, Edward J. Nowak
  • Patent number: 7804119
    Abstract: Device structures with hyper-abrupt p-n junctions, methods of forming hyper-abrupt p-n junctions, and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt-n junction.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Publication number: 20100230751
    Abstract: A Schottky barrier diode comprises a doped guard ring having a doping of a second conductivity type in a semiconductor-on-insulator (SOI) substrate. The Schottky barrier diode further comprises a first-conductivity-type-doped semiconductor region having a doping of a first conductivity type, which is the opposite of the second conductivity type, on one side of a dummy gate electrode and a Schottky barrier structure surrounded by the doped guard ring on the other side. A Schottky barrier region may be laterally surrounded by the dummy gate electrode and the doped guard ring. The doped guard ring includes an unmetallized portion of a gate-side second-conductivity-type-doped semiconductor region having a doping of a second conductivity type. A Schottky barrier region may be laterally surrounded by a doped guard ring including a gate-side doped semiconductor region and a STI-side doped semiconductor region. Design structures for the inventive Schottky barrier diode are also provided.
    Type: Application
    Filed: August 10, 2009
    Publication date: September 16, 2010
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Alan F. Norris, Robert M. Rassel, Yun Shi
  • Publication number: 20100230753
    Abstract: A varactor diode includes a portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate and a gate electrode located thereupon. A first electrode having a doping of a first conductivity type laterally abuts a doped semiconductor region having the first conductivity type, which laterally abuts a second electrode having a doping of a second conductivity type, which is the opposite of the first conductivity type. A hyperabrupt junction is formed between the second doped semiconductor region and the second electrode. The gate electrode controls the depletion of the first and second doped semiconductor regions, thereby varying the capacitance of the varactor diode. A design structure for the varactor diode is also provided.
    Type: Application
    Filed: August 31, 2009
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Patent number: 7776704
    Abstract: The present invention provides a method of forming a self-aligned heterobipolar transistor (HBT) device in a BiCMOS technology. The method includes forming a raised extrinsic base structure by using an epitaxial growth process in which the growth rate between single crystal silicon and polycrystalline silicon is different and by using a low temperature oxidation process such as a high-pressure oxidation (HIPOX) process to form a self-aligned emitter/extrinsic base HBT structure.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Alvin J. Joseph, Qizhi Liu
  • Publication number: 20100156526
    Abstract: A doped contact region having an opposite conductivity type as a bottom semiconductor layer is provided underneath a buried insulator layer in a bottom semiconductor layer. At least one conductive via structure extends from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer and to the doped contact region. The doped contact region is biased at a voltage that is at or close to a peak voltage in the RF switch that removes minority charge carriers within the induced charge layer. The minority charge carriers are drained through the doped contact region and the at least one conductive via structure. Rapid discharge of mobile electrical charges in the induce charge layer reduces harmonic generation and signal distortion in the RF switch. A design structure for the semiconductor structure is also provided.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Patent number: 7709338
    Abstract: A method of fabricating an heterojunction bipolar transistor (HBT) structure in a bipolar complementary metal-oxide-semiconductor (BiCMOS) process selectively thickens an oxide layer overlying a base region in areas that are not covered by a temporary emitter and spacers such that the temporary emitter can be removed and the base-emitter junction can be exposed without also completely removing the oxide overlying the areas of the base region that are not covered by the temporary emitter or spacers. As a result, a photomask is not required to remove the temporary emitter and to expose the base-emitter junction.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Qizhi Liu, Peter B. Gray, Alvin J. Joseph
  • Patent number: 7701015
    Abstract: Disclosed is a method and structure for an integrated circuit structure that includes a plurality of complementary metal oxide semiconductor (CMOS) transistors and a plurality of vertical bipolar transistors positioned on a single substrate. The vertical bipolar transistors are taller devices than the CMOS transistors. In this structure, a passivating layer is positioned above the substrate, and between the vertical bipolar transistors and the CMOS transistors. A wiring layer is above the passivating layer. The vertical bipolar transistors are in direct contact with the wiring layer and the CMOS transistors are connected to the wiring layer by contacts extending through the passivating layer.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Zhong-Xiang He, Bradley A. Orner, Vidhya Ramachandran, Alvin J. Joseph, Stephen A. St. Onge, Ping-Chuan Wang
  • Publication number: 20100093148
    Abstract: Methods and heterostructure barrier varactor (HBV) diodes optimized for application with frequency multipliers at providing outputs at submillimeter wave frequencies and above. The HBV diodes include a silicon-containing substrate, an electrode over the silicon-containing substrate, and one or more heterojunction quantum wells of alternating layers of Si and SiGe of one or more electrodes of the diode. Each SiGe quantum well preferably has a floating SiGe layer between adjacent SiGe gradients followed by adjacent Si layers, such that, a single homogeneous structure is provided characterized by having no distinct separations. The plurality of Si/SiGe heterojunction quantum wells may be symmetric or asymmetric.
    Type: Application
    Filed: December 17, 2009
    Publication date: April 15, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Erik M. Dahlstrom, Alvin J. Joseph, Robert M. Rassel, David C. Sheridan
  • Patent number: 7696604
    Abstract: Methods and heterostructure barrier varactor (HBV) diodes optimized for application with frequency multipliers at providing outputs at submillimeter wave frequencies and above. The HBV diodes include a silicon-containing substrate, an electrode over the silicon-containing substrate, and one or more heterojunction quantum wells of alternating layers of Si and SiGe of one or more electrodes of the diode. Each SiGe quantum well preferably has a floating SiGe layer between adjacent SiGe gradients followed by adjacent Si layers, such that, a single homogeneous structure is provided characterized by having no distinct separations. The plurality of Si/SiGe heterojunction quantum wells may be symmetric or asymmetric.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Erik M. Dahlstrom, Alvin J. Joseph, Robert M. Rassel, David C. Sheridan
  • Publication number: 20100035403
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 11, 2010
    Inventors: Brennan J. Brown, James R. Elliott, Alvin J. Joseph, Edward J. Nowak