Patents by Inventor Aly E. Fathy

Aly E. Fathy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8330372
    Abstract: A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 11, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Yoon W. Kang, Aly E. Fathy, Joshua L. Wilson
  • Publication number: 20110285479
    Abstract: A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 24, 2011
    Inventors: Yoon W. Kang, Aly E. Fathy, Joshua L. Wilson
  • Patent number: 7808439
    Abstract: A substrate integrated waveguide (SIW) slot full-array antenna fabricated employing printed circuit board technology. The SIW slot full-array antenna using either single or multi-layer structures greatly reduces the overall height and physical steering requirements of a mobile antenna when compared to a conventional metallic waveguide slot array antenna. The SIW slot full-array antenna is fabricated using a low-loss dielectric substrate with top and bottom metal plating. An array of radiating cross-slots is etched in to the top plating to produce circular polarization at a selected tilt-angle. Lines of spaced-apart, metal-lined vias form the sidewalls of the waveguides and feeding network. In multi-layer structures, the adjoining layers are coupled by transverse slots at the interface of the two layers.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 5, 2010
    Assignee: University of Tennessee Reserch Foundation
    Inventors: Songnan Yang, Aly E. Fathy
  • Publication number: 20090066597
    Abstract: A substrate integrated waveguide (SIW) slot full-array antenna fabricated employing printed circuit board technology. The SIW slot full-array antenna using either single or multi-layer structures greatly reduces the overall height and physical steering requirements of a mobile antenna when compared to a conventional metallic waveguide slot array antenna. The SIW slot full-array antenna is fabricated using a low-loss dielectric substrate with top and bottom metal plating. An array of radiating cross-slots is etched in to the top plating to produce circular polarization at a selected tilt-angle. Lines of spaced-apart, metal-lined vias form the sidewalls of the waveguides and feeding network. In multi-layer structures, the adjoining layers are coupled by transverse slots at the interface of the two layers.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 12, 2009
    Inventors: Songnan Yang, Aly E. Fathy
  • Patent number: 6617670
    Abstract: A surface PIN (SPIN) device and a method of fabricating such a SPIN device. The SPIN device, when activated, confines carrier injection to a small volume near the surface of the device such that the device is sufficiently conductive to simulate a planar conductor. The SPIN device comprises a P+ region and an N+ region formed in an intrinsic (I) layer. The P+ and N+ regions are separated by a lateral length of intrinsic material of length L. The length L is approximately the carrier diffusion length. When DC bias is applied across the N+ and P+ regions carriers are injected into the intrinsic region at a density exceeding 1018 carriers per cubic cm. The intrinsic region is sufficiently thin to confine the carriers near the surface of the intrinsic region. As such, in the “on” state, the SPIN device simulates a conductive material. In the “off” state, the SPIN device is no longer conductive.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: September 9, 2003
    Assignee: Sarnoff Corporation
    Inventors: Gordon C. Taylor, Arye Rosen, Aly E. Fathy, Pradyumna K. Swain, Stewart M. Perlow
  • Patent number: 6597327
    Abstract: A reconfigurable adaptive wideband antenna includes a reconfigurable conductive substrate for dynamic reconfigurablility of the frequency, polarization, bandwidth, number of beams and their spatial directions, and the shape of the radiation pattern. The antenna is configured as a reflect array antenna having a single broadband feed. Reflective elements are electronically painted on the reconfigurable conductive surface using plasma injection of carriers in high-resistivity semiconductors.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: July 22, 2003
    Assignee: Sarnoff Corporation
    Inventors: Sridhar Kanamaluru, Aly E. Fathy, Ayre Rosen
  • Patent number: 6567046
    Abstract: A reconfigurable antenna capable of dynamic reconfigurability of several antenna parameters. Specifically, the present invention is an antenna comprising a plurality of surface PIN devices arranged in a gridlike array. Each of the SPIN devices can be individually activated or deactivated. When a SPIN device is activated, the surface of the device is injected with carriers such that a plasma is produced within the intrinsic region of the device. The plasma can be sufficiently conductive to produce conductor or metal like characteristics at the surface of the device. Various ones of the SPIN devices can be activated to electronically paint a conductive pattern upon the substrate supporting the PIN devices. Through selective activation of the SPIN devices various surface antenna patterns can be produced upon the substrate including dipoles, cross dipoles, loop antennas, Yagi-Uda type antennas, log periodic antennas, and the like.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: May 20, 2003
    Assignee: Sarnoff Corporation
    Inventors: Gordon C. Taylor, Stewart M. Perlow, Arye Rosen, Aly E. Fathy, Sridhar Kanamaluru, Moniem Esherbiny
  • Patent number: 6445346
    Abstract: A planar polarizer feed network comprising a six port branch coupler having two input ports and four output ports. The output ports are designed to have the same amplitude while their phases are sequentially offset by 90 degrees when fed from a first input port or by minus 90 degrees when fed from a second input port. In one embodiment, each output port is coupled to an aperture coupled antenna array comprising four slots and four patch antenna elements. In this arrangement, an RF signal may be coupled to each of the two input ports to couple properly phased signals to each of the antenna elements to simultaneously form both right-hand and left-hand circularly polarized signal emitted from the planar array of antenna elements.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: September 3, 2002
    Assignee: Sarnoff Corporation
    Inventors: Aly E. Fathy, Louis S. Napoli, Francis J. McGinty, David McGee
  • Publication number: 20020101391
    Abstract: A reconfigurable adaptive wideband antenna includes a reconfigurable conductive substrate for dynamic reconfigurablility of the frequency, polarization, bandwidth, number of beams and their spatial directions, and the shape of the radiation pattern. The antenna is configured as a reflect array antenna having a single broadband feed. Reflective elements are electronically painted on the reconfigurable conductive surface using plasma injection of carriers in high-resistivity semiconductors.
    Type: Application
    Filed: January 26, 2001
    Publication date: August 1, 2002
    Applicant: Sarnoff Corporation
    Inventors: Sridhar Kanamaluru, Aly E. Fathy, Ayre Rosen
  • Publication number: 20020039083
    Abstract: A reconfigurable antenna capable of dynamic reconfigurability of several antenna parameters. Specifically, the present invention is an antenna comprising a plurality of surface PIN devices arranged in a gridlike array. Each of the SPIN devices can be individually activated or deactivated. When a SPIN device is activated, the surface of the device is injected with carriers such that a plasma is produced within the intrinsic region of the device. The plasma can be sufficiently conductive to produce conductor or metal like characteristics at the surface of the device. Various ones of the SPIN devices can be activated to electronically paint a conductive pattern upon the substrate supporting the PIN devices. Through selective activation of the SPIN devices various surface antenna patterns can be produced upon the substrate including dipoles, cross dipoles, loop antennas, Yagi-Uda type antennas, log periodic antennas, and the like.
    Type: Application
    Filed: March 20, 2001
    Publication date: April 4, 2002
    Inventors: Gordon C. Taylor, Stewart M. Perlow, Arye Rosen, Aly E. Fathy, Sridhar Kanamaluru, Moniem Elsherbiny
  • Publication number: 20020018018
    Abstract: A planar polarizer feed network comprising a six port branch coupler having two input ports and four output ports. The output ports are designed to have the same amplitude while their phases are sequentially offset by 90 degrees when fed from a first input port or by minus 90 degrees when fed from a second input port. In one embodiment, each output port is coupled to an aperture coupled antenna array comprising four slots and four patch antenna elements. In this arrangement, an RF signal may be coupled to each of the two input ports to couple properly phased signals to each of the antenna elements to simultaneously form both right-hand and left-hand circularly polarized signal emitted from the planar array of antenna elements.
    Type: Application
    Filed: April 27, 2001
    Publication date: February 14, 2002
    Inventors: Aly E. Fathy, Louis S. Napoli, Francis J. McGinty, David McGee
  • Publication number: 20010049180
    Abstract: A surface PIN (SPIN) device and a method of fabricating such a SPIN device. The SPIN device, when activated, confines carrier injection to a small volume near the surface of the device such that the device is sufficiently conductive to simulate a planar conductor. The SPIN device comprises a P+ region and an N+ region formed in an intrinsic (I) layer. The P+ and N+ regions are separated by a lateral length of intrinsic material of length L. The length L is approximately the carrier diffusion length. When DC bias is applied across the N+ and P+ regions carriers are injected into the intrinsic region at a density exceeding 1018 carriers per cubic cm. The intrinsic region is sufficiently thin to confine the carriers near the surface of the intrinsic region. As such, in the “on” state, the SPIN device simulates a conductive material. In the “off” state, the SPIN device is no longer conductive.
    Type: Application
    Filed: March 20, 2001
    Publication date: December 6, 2001
    Inventors: Gordon C. Taylor, Arye Rosen, Aly E. Fathy, Pradyumna K. Swain, Stewart M. Perlow
  • Patent number: 5929510
    Abstract: An electronic integrated circuit which includes at least one of RF, microwave, digital and analog components connected in a desired circuit. The integrated circuit includes a substrate of a conductive material having on a surface thereof a body of a dielectric material. The dielectric body is formed of a plurality of layers of the dielectric material bonded together. A plurality of strips of a conductive material are on the surfaces of the layers of the body to form RF, analog and digital components. Discrete electronic devices are mounted on the body and connected in the circuit. Vias of a conductive material extend through the various layers of the body to electrically connect the various strips of conductive material on the layers of the body.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: July 27, 1999
    Assignees: Sarnoff Corporation, Sharp Kabushiki Kaisha
    Inventors: Bernard Dov Geller, Aly E. Fathy, Stewart M. Perlow, Ashok Naryan Prabhu, Ellen Schwartz Tormey, Valerie Ann Pendrick, Israel Haim Kalish
  • Patent number: 5486839
    Abstract: A conical corrugated microwave feed horn. A conical flare section is formed at the aperture of the feed horn and a second smooth cylindrical section is formed at the throat of the feed horn. The conical flare section is formed with two regions. The first region is a corrugated conical region formed at the aperture and having a plurality of slots formed parallel to the central axis of the feed horn. Each slot in the plurality of slots has an inner surface closest to the central axis of the feed horn and an outer surface furthest from the central axis. Connecting the corrugated conical region to the cylindrical throat is a smooth conical region. The first slot adjacent the smooth conical region has first and second formed lips on the terminating end thereof. The lips are formed directed inwardly toward each other. The last slot of the plurality of slots at the aperture of the feed horn has the terminating end of the inner surface extending in length beyond the length of the outer surface.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: January 23, 1996
    Assignee: Winegard Company
    Inventors: Charles E. Rodeffer, Edgar J. Denlinger, Aly E. Fathy