Patents by Inventor Amélie Barbara Hildegarde BÉDUER

Amélie Barbara Hildegarde BÉDUER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240042102
    Abstract: A method of producing a cryogel-based multicompartment 3D scaffold is herein disclosed. The method comprises the steps of: a) providing a first frozen polymeric layer on a refrigerated support kept at subzero temperature; b) providing subsequent polymeric layers to obtain a stack of polymeric layers by possibly modulating the subzero temperature of the refrigerated support; c) optionally incubating the final polymeric structure at subzero temperature; and d) placing the produced cryogel at a temperature above 0° C., wherein each subsequent layer i) is deposited on the previous one after freezing of this latter; ii) is deposited on the previous one before the complete polymerization of this latter; and iii) is deposited with a temperature higher than the freezing temperature of the previously deposited layer. Cryogel scaffolds obtained from said method are also disclosed.
    Type: Application
    Filed: July 5, 2023
    Publication date: February 8, 2024
    Inventors: Amélie Barbara Hildegarde Béduer, Thomas Braschler, Philippe Renaud
  • Patent number: 11724006
    Abstract: A method of producing a cryogel-based multicompartment 3D scaffold is herein disclosed. The method comprises the steps of: a) providing a first frozen polymeric layer on a refrigerated support kept at subzero temperature; b) providing subsequent polymeric layers to obtain a stack of polymeric layers by possibly modulating the subzero temperature of the refrigerated support; c) optionally incubating the final polymeric structure at subzero temperature; and d) placing the produced cryogel at a temperature above 0° C., the method being characterized in that each subsequent layer i) is deposited on the previous one after freezing of this latter; ii) is deposited on the previous one before the complete polymerization of this latter; and iii) is deposited with a temperature higher than the freezing temperature of the previously deposited layer. Cryogel scaffolds obtained from the method of the invention are also disclosed.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 15, 2023
    Assignee: École Polytechnique Fédérale de Lausanne (EPFL)
    Inventors: Amélie Barbara Hildegarde Béduer, Thomas Braschler, Philippe Renaud
  • Publication number: 20220313871
    Abstract: The invention relates to a scaffold material comprising a plurality of particles of a highly porous polymeric material, characterized in that said scaffold material becomes a shapeable paste once hydrated. The specific features of the particle material impart a special behavior to the scaffold, which can be easily shaped and even highly reversibly compressed, so that in certain aspects it can, if needed, be injected, said capacity to be shaped being maintained over a high range of hydration conditions. A particular aspect of the invention relates, therefore, to the use of such scaffold material for the manufacturing of shapeable body implants, such as breast implants, to the shapeable body implants themselves as well as to non-invasive methods for using thereof in creating or reconstructing a three-dimensional volume in a subject's body part.
    Type: Application
    Filed: January 7, 2022
    Publication date: October 6, 2022
    Inventors: Amelie Barbara Hildegarde Beduer, Thomas Braschler, Philippe Renaud, Giorgio Pietramaggiori, Saja Scherer
  • Patent number: 11219703
    Abstract: The invention relates to a scaffold material comprising a plurality of particles of a highly porous polymeric material, characterized in that said scaffold material becomes a shapeable paste once hydrated. The specific features of the particle material impart a special behavior to the scaffold, which can be easily shaped and even highly reversibly compressed, so that in certain aspects it can, if needed, be injected, said capacity to be shaped being maintained over a high range of hydration conditions. A particular aspect of the invention relates, therefore, to the use of such scaffold material for the manufacturing of shapeable body implants, such as breast implants, to the shapeable body implants themselves as well as to non-invasive methods for using thereof in creating or reconstructing a three-dimensional volume in a subject's body part.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: January 11, 2022
    Assignee: École Polytechnique Fédérale de Lausanne (EPFL)
    Inventors: Amélie Barbara Hildegarde Béduer, Thomas Braschler, Philippe Renaud, Giorgio Pietramaggiori, Saja Scherer
  • Patent number: 10816823
    Abstract: The invention relates to a contact lens for use in the treatment of ocular inflammatory pathologies. The contact lens comprises a soft porous material coupled, in certain embodiments, with detoxifying agents. Said material and/or agents contact and neutralize inflammatory mediators present in the tear fluid of ocular pathologies patients. The nature and architecture of the soft porous material allows a greater contact area between the material itself and/or detoxifying agents with inflammatory mediators, in view of the reversible compression of the soft material that allows greater lachrymal fluid turnover and fluid exchange within the contact lens upon e.g. blinking.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: October 27, 2020
    Assignee: École Polytechnique Fédérale de Lausanne
    Inventors: Amélie Barbara Hildegarde Béduer, Thomas Braschler, Philippe Renaud, François Majo
  • Publication number: 20190336649
    Abstract: A method of producing a cryogel-based multicompartment 3D scaffold is herein disclosed. The method comprises the steps of: a) providing a first frozen polymeric layer on a refrigerated support kept at subzero temperature; b) providing subsequent polymeric layers to obtain a stack of polymeric layers by possibly modulating the subzero temperature of the refrigerated support; c) optionally incubating the final polymeric structure at subzero temperature; and d) placing the produced cryogel at a temperature above 0° C., the method being characterized in that each subsequent layer i) is deposited on the previous one after freezing of this latter; ii) is deposited on the previous one before the complete polymerization of this latter; and iii) is deposited with a temperature higher than the freezing temperature of the previously deposited layer. Cryogel scaffolds obtained from the method of the invention are also disclosed.
    Type: Application
    Filed: January 10, 2018
    Publication date: November 7, 2019
    Inventors: Amélie Barbara Hildegarde BÉDUER, Thomas BRASCHLER, Philippe RENAUD
  • Publication number: 20180335647
    Abstract: The invention relates to a contact lens for use in the treatment of ocular inflammatory pathologies. The contact lens comprises a soft porous material coupled, in certain embodiments, with detoxifying agents. Said material and/or agents contact and neutralize inflammatory mediators present in the tear fluid of ocular pathologies patients. The nature and architecture of the soft porous material allows a greater contact area between the material itself and/or detoxifying agents with inflammatory mediators, in view of the reversible compression of the soft material that allows greater lachrymal fluid turnover and fluid exchange within the contact lens upon e.g. blinking.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 22, 2018
    Inventors: Amélie Barbara Hildegarde Béduer, Thomas Braschler, Philippe Renaud, François Majo
  • Publication number: 20180250444
    Abstract: The invention relates to a scaffold material comprising a plurality of particles of a highly porous polymeric material, characterized in that said scaffold material becomes a shapeable paste once hydrated. The specific features of the particle material impart a special behavior to the scaffold, which can be easily shaped and even highly reversibly compressed, so that in certain aspects it can, if needed, be injected, said capacity to be shaped being maintained over a high range of hydration conditions. A particular aspect of the invention relates, therefore, to the use of such scaffold material for the manufacturing of shapeable body implants, such as breast implants, to the shapeable body implants themselves as well as to non-invasive methods for using thereof in creating or reconstructing a three-dimensional volume in a subject's body part.
    Type: Application
    Filed: August 18, 2016
    Publication date: September 6, 2018
    Inventors: Amélie Barbara Hildegarde BÉDUER, Thomas BRASCHLER, Philippe RENAUD, Giorgio PIETRAMAGGIORI, Saja SCHERER