Patents by Inventor Amanda Marie Flores

Amanda Marie Flores has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9422395
    Abstract: Photoactive additives are disclosed. The additive is formed from the reaction of a dihydroxybenzophenone, one or more linker moieties having functional groups that react with the phenolic groups, a diol chain extender, and an end-capping agent. If desired, a secondary linker moiety can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 23, 2016
    Assignee: SABIC Global Technologies, B.V.
    Inventors: Jean-Francois Morizur, Paul Dean Sybert, James Franklin Hoover, Peter Johnson, Thomas L. Evans, Amanda Marie Flores
  • Patent number: 9346949
    Abstract: In an embodiment, a reflector comprises a polycarbonate composition, the polycarbonate composition comprises: polycarbonate; 10 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. A molded article of the polycarbonate has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: May 24, 2016
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Amanda Marie Flores, Vandita Pai-Paranjape
  • Patent number: 9315675
    Abstract: In an embodiment, a polycarbonate composition comprises: polycarbonate; 7 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. In an embodiment, a polycarbonate composition comprises: a polycarbonate; 7 to 20 wt % titanium dioxide; a flame retardant; and an optional UV stabilizer; wherein the polycarbonate composition has a maximum reflectance of greater than or equal to 95%. The melt volume rate as determined at 300° C. using a 1.2 kilogram weight, in accordance with ASTM D1238-04 is from 5 to 30 grams per 10 minutes.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: April 19, 2016
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Amanda Marie Flores, Vandita Pai-Paranjape
  • Publication number: 20150267059
    Abstract: In an embodiment, a polycarbonate composition comprises: polycarbonate; 7 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. In an embodiment, a polycarbonate composition comprises: a polycarbonate; 7 to 20 wt % titanium dioxide; a flame retardant; and an optional UV stabilizer; wherein the polycarbonate composition has a maximum reflectance of greater than or equal to 95%. The melt volume rate as determined at 300° C. using a 1.2 kilogram weight, in accordance with ASTM D1238-04 is from 5 to 30 grams per 10 minutes.
    Type: Application
    Filed: June 9, 2015
    Publication date: September 24, 2015
    Inventors: Amanda Marie Flores, Vandita Pai-Paranjape
  • Publication number: 20150232614
    Abstract: Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive containing a photoactive group derived from a monofunctional benzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
    Type: Application
    Filed: May 1, 2015
    Publication date: August 20, 2015
    Inventors: Jean-Francois Morizur, Paul Dean Sybert, Peter Johnson, Thomas L. Evans, James Franklin Hoover, Amanda Marie Flores
  • Publication number: 20150218309
    Abstract: Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
    Type: Application
    Filed: January 28, 2015
    Publication date: August 6, 2015
    Inventors: Jean-Francois Morizur, Paul Dean Sybert, Amanda Marie Flores, Peter Johnson, Andrew Frazee, Thomas L. Evans
  • Patent number: 9090759
    Abstract: In an embodiment, a polycarbonate composition comprises: polycarbonate; 7 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. In an embodiment, a polycarbonate composition comprises: a polycarbonate; 7 to 20 wt % titanium dioxide; a flame retardant; and an optional UV stabilizer; wherein the polycarbonate composition has a maximum reflectance of greater than or equal to 95%. The melt volume rate as determined at 300° C. using a 1.2 kilogram weight, in accordance with ASTM D1238-04 is from 5 to 30 grams per 10 minutes.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 28, 2015
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Amanda Marie Flores, Vandita Pai-Paranjape
  • Publication number: 20150147557
    Abstract: Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 28, 2015
    Inventors: Jean-Francois Morizur, Paul Dean Sybert, Amanda Marie Flores, Peter Johnson, Andrew Frazee, Thomas L. Evans
  • Patent number: 9023912
    Abstract: Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive containing a photoactive group derived from a monofunctional benzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 5, 2015
    Assignee: SABIC Global Technologies B.V.
    Inventors: Jean-Francois Morizur, Paul Dean Sybert, Peter Johnson, Thomas L. Evans, James Franklin Hoover, Amanda Marie Flores
  • Publication number: 20140226342
    Abstract: In an embodiment, a reflector comprises a polycarbonate composition, the polycarbonate composition comprises: polycarbonate; 10 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. A molded article of the polycarbonate has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Amanda Marie Flores, Vandita Pai-Paranjape
  • Publication number: 20130265771
    Abstract: In an embodiment, a polycarbonate composition comprises: polycarbonate; 7 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. In an embodiment, a polycarbonate composition comprises: a polycarbonate; 7 to 20 wt % titanium dioxide; a flame retardant; and an optional UV stabilizer; wherein the polycarbonate composition has a maximum reflectance of greater than or equal to 95%. The melt volume rate as determined at 300° C. using a 1.2 kilogram weight, in accordance with ASTM D1238-04 is from 5 to 30 grams per 10 minutes.
    Type: Application
    Filed: February 12, 2013
    Publication date: October 10, 2013
    Applicant: SABIC Innovative Plastics IP B.V.
    Inventors: Amanda Marie Flores, Vandita Pai-Paranjape