Patents by Inventor Amani Fawzi

Amani Fawzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10524664
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine a flow rate of fluid in the target; angiography is also performed using one or more fast scanning methods to determine a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 7, 2020
    Assignees: NORTHWESTERN UNIVERSITY, OPTICENT, INC.
    Inventors: Wenzhong Liu, Lian Duan, Hao F. Zhang, Kieren J. Patel, Hao Li, Biqin Dong, Amani A. Fawzi
  • Patent number: 10188843
    Abstract: The present disclosure described methods, systems, and techniques for applying contrast-enhanced ultrasound to locate areas of blockage within retinal vessels and to break up clots that are causing damage. In addition to identifying the damaged area, the researchers anticipate that the initial image may serve as a baseline for monitoring the effect of treatment on the vessel, which may be achieved in multiple ways. The vibration effect of the ultrasound itself may suffice to dislodge clots. The microbubbles may also be coated or filled with medication, with ultrasonic shock waves activating the coating or causing mini explosions to release the medicine. Loading the microbubbles with a therapeutic agent, visualizing their presence at the diseased site using the ultrasound diagnostic mode, and then activating the microbubbles to release their contents at the targeted lesion could be a powerful and effective way to reverse occlusion without harming other areas of the eye or body.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: January 29, 2019
    Assignees: UNIVERSITY OF SOUTHERN CALIFORNIA, DOHENY EYE INSTITUTE
    Inventors: Amani Fawzi, Hossein Ameri, Mark S. Humayun
  • Publication number: 20180020922
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine a flow rate of fluid in the target; angiography is also performed using one or more fast scanning methods to determine a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Application
    Filed: May 1, 2017
    Publication date: January 25, 2018
    Inventors: Wenzhong Liu, Lian Duan, Hao F. Zhang, Kieren J. Patel, Hao Li, Biqin Dong, Amani A. Fawzi
  • Publication number: 20180021557
    Abstract: The present disclosure described methods, systems, and techniques for applying contrast-enhanced ultrasound to locate areas of blockage within retinal vessels and to break up clots that are causing damage. In addition to identifying the damaged area, the researchers anticipate that the initial image may serve as a baseline for monitoring the effect of treatment on the vessel, which may be achieved in multiple ways. The vibration effect of the ultrasound itself may suffice to dislodge clots. The microbubbles may also be coated or filled with medication, with ultrasonic shock waves activating the coating or causing mini explosions to release the medicine. Loading the microbubbles with a therapeutic agent, visualizing their presence at the diseased site using the ultrasound diagnostic mode, and then activating the microbubbles to release their contents at the targeted lesion could be a powerful and effective way to reverse occlusion without harming other areas of the eye or body.
    Type: Application
    Filed: March 8, 2017
    Publication date: January 25, 2018
    Inventors: Amani Fawzi, Hossein Ameri, Mark S. Humayun
  • Publication number: 20140336563
    Abstract: The present disclosure described methods, systems, and techniques for applying contrast-enhanced ultrasound to locate areas of blockage within retinal vessels and to break up clots that are causing damage. In addition to identifying the damaged area, the researchers anticipate that the initial image may serve as a baseline for monitoring the effect of treatment on the vessel, which may be achieved in multiple ways. The vibration effect of the ultrasound itself may suffice to dislodge clots. The microbubbles may also be coated or filled with medication, with ultrasonic shock waves activating the coating or causing mini explosions to release the medicine. Loading the microbubbles with a therapeutic agent, visualizing their presence at the diseased site using the ultrasound diagnostic mode, and then activating the microbubbles to release their contents at the targeted lesion could be a powerful and effective way to reverse occlusion without harming other areas of the eye or body.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 13, 2014
    Inventors: Amani Fawzi, Hossein Ameri, Mark S. Humayun
  • Patent number: 8764658
    Abstract: The present disclosure described methods, systems, and techniques for applying contrast-enhanced ultrasound to locate areas of blockage within retinal vessels and to break up clots that are causing damage. In addition to identifying the damaged area, the researchers anticipate that the initial image may serve as a baseline for monitoring the effect of treatment on the vessel, which may be achieved in multiple ways. The vibration effect of the ultrasound itself may suffice to dislodge clots. The microbubbles may also be coated or filled with medication, with ultrasonic shock waves activating the coating or causing mini explosions to release the medicine. Loading the microbubbles with a therapeutic agent, visualizing their presence at the diseased site using the ultrasound diagnostic mode, and then activating the microbubbles to release their contents at the targeted lesion could be a powerful and effective way to reverse occlusion without harming other areas of the eye or body.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: July 1, 2014
    Assignee: Doheny Eye Institute
    Inventors: Amani Fawzi, Hossen Ameri, Mark S. Humayun
  • Publication number: 20090030323
    Abstract: The present disclosure described methods, systems, and techniques for applying contrast-enhanced ultrasound to locate areas of blockage within retinal vessels and to break up clots that are causing damage. In addition to identifying the damaged area, the researchers anticipate that the initial image may serve as a baseline for monitoring the effect of treatment on the vessel, which may be achieved in multiple ways. The vibration effect of the ultrasound itself may suffice to dislodge clots. The microbubbles may also be coated or filled with medication, with ultrasonic shock waves activating the coating or causing mini explosions to release the medicine. Loading the microbubbles with a therapeutic agent, visualizing their presence at the diseased site using the ultrasound diagnostic mode, and then activating the microbubbles to release their contents at the targeted lesion could be a powerful and effective way to reverse occlusion without harming other areas of the eye or body.
    Type: Application
    Filed: August 6, 2008
    Publication date: January 29, 2009
    Applicant: Doheny Eye Institute
    Inventors: Amani Fawzi, Hossein Ameri, Mark S. Humayun